【題目】已知中,,,.將繞點逆時針旋轉后得到,其中點運動的路徑為.那么圖中陰影部分的面積是____.
【答案】
【解析】
根據(jù)直角三角形的性質得到∠CAB=60,AB=2AC=2,求得BC=,根據(jù)旋轉的性質得到AC′=AC=1,AB′=AB=2,B′C′=BC=,∠B′AB=30,∠C′AB′=∠CAB=60,在Rt△AC′D中求得C′D=AC′=1,根據(jù)三角形和扇形的面積公式即可得到結論.
∵∠C=90,∠ABC=30,AC=1
∴∠CAB=60,AB=2AC=2,
∴BC=,
∵Rt△ABC繞點A逆時針旋轉15后得到△AB′C′,
∴AC′=AC=1,AB′=AB=2,B′C′=BC=,∠B′AB=15,∠C′AB′=∠CAB=60,
∴∠C′AD=∠C′AB′-∠BAB′=45,
在Rt△AC′D中,∵∠C′AD=45,
∴C′D=AC′=1,
∴B′D=B′C′C′D=1,
∴圖中陰影部分的面積=S扇形BAB′S△ADB′
=
=,
故答案為:.
科目:初中數(shù)學 來源: 題型:
【題目】“餃子“又名“交子”或者“嬌耳”,是新舊交替之意,它是重慶人民的年夜飯必吃的一道美食.今年除夕,小僑跟著媽媽一起包餃子準備年夜飯,體驗濃濃的團圓氣氛.已知小僑家共10人,平均每人吃10個餃子,計劃用10分鐘將餃子包完.
(1)若媽媽每分鐘包餃子的速度是小僑速度的2倍少2個,那么小僑每分鐘至少要包多少個餃子?
(2)小僑以(1)問中的最低速度,和媽媽同時開始包餃子,媽媽包餃子的速度在(1)問的最低速度基礎上提升了a%,在包餃子的過程中小僑外出耽誤了分鐘,返家后,小僑與媽媽一起包完剩下的餃子,所用時間比原計劃少了a%,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A、點B的坐標分別為(4,0)、(0,3),將線段BA繞點A沿順時針旋轉90°,設點B旋轉后的對應點是點B1,求點B1的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1.拋物線經(jīng)過點點在拋物線上,且在軸的上方,點的橫坐標記為.
(1)求拋物線的解析式:
(2)如圖2.過點作軸的平行線交直線于點.交軸于點,若平分,求的值:
(3)點在直線上.點在軸上,且位于點的上方,那么在拋物線上是否存在點,使得以點為頂點的四邊形是菱形?若存在,請直接寫出菱形的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在□ABCD中,E為BC的中點,過點E作EF⊥AB于點F,延長DC,交FE的延長線于點G,連結DF,已知∠FDG=45°
(1)求證:GD=GF.
(2)已知BC=10, .求 CD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x分別與雙曲線y=和y=交于第一象限內的點A和B,且OA=2AB,將直線y=x向左平移4個單位后,分別與x軸,y軸交于點D、E,與雙曲線y=交于點C,△OBC的面積為3.
(1)求m,n的值;
(2)點C到直線AB的距離是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線的圖象經(jīng)過和兩點,且與軸交于,直線是拋物線的對稱軸,過點的直線與直線相交于點,且點在第一象限.
(1)求該拋物線的解析式;
(2)若直線和直線、軸圍成的三角形面積為6,求此直線的解析式;
(3)點在拋物線的對稱軸上,與直線和軸都相切,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為支持國家南水北調工程建設,小王家由原來養(yǎng)殖戶變?yōu)榉N植戶,經(jīng)市場調查得知,當種植櫻桃的面積x不超過15畝時,每畝可獲得利潤y=1900元;超過15畝時,每畝獲得利潤y(元)與種植面積x(畝)之間的函數(shù)關系如下表(為所學過的一次函數(shù),反比例函數(shù)或二次函數(shù)中的一種)
x(畝) | 20 | 25 | 30 | 35 |
y(元) | 1800 | 1700 | 1600 | 1500 |
(1)請求出種植櫻桃的面積超過15畝時每畝獲得利潤y與x的函數(shù)關系式;
(2)如果小王家計劃承包荒山種植櫻桃,受條件限制種植櫻桃面積x不超過50畝,設小王家種植x畝櫻桃所獲得的總利潤為W元,求小王家承包多少畝荒山獲得的總利潤最大,并求總利潤W(元)的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某植物園有一塊足夠大的空地,其中有一堵長為a米的墻,現(xiàn)準備用20米的籬笆圍兩間矩形花圃,中間用籬笆隔開.小俊設計了如圖甲和乙的兩種方案:
方案甲中AD的長不超過墻長;方案乙中AD的長大于墻長.
(1)若a=6.
①按圖甲的方案,要圍成面積為25平方米的花圃,則AD的長是多少米?
②按圖乙的方案,能圍成的矩形花圃的最大面積是多少?
(2)若0<a<6.5,哪種方案能圍成面積最大的矩形花圃?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com