【題目】某游樂場部分平面圖如圖所示,C、E、A在同一直線上,D、E、B在同一直線上,測得A處與E處的距離為80 米,C處與D處的距離為34米,∠C=90°,∠BAE=30°.( ≈1.4, ≈1.7)
(1)求旋轉(zhuǎn)木馬E處到出口B處的距離;
(2)求海洋球D處到出口B處的距離(結(jié)果保留整數(shù)).

【答案】
(1)解:∵在Rt△ABE中,∠BAE=30°,

∴BE= AE= ×80=40(米)


(2)解:∵在Rt△ABE中,∠BAE=30°,

∴∠AEB=90°﹣30°=60°,

∴∠CED=∠AEB=60°,

∴在Rt△CDE中,DE= =20(米),

則BD=DE+BE=20+40=60(米)


【解析】(1)在Rt△ABE中,利用三角函數(shù)即可直接求得BE的長;(2)在Rt△CDE中,利用三角函數(shù)求得DE的長,然后利用DB=DE+EB求解.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,點(diǎn)A坐標(biāo)為(2,0),以O(shè)A為邊在第一象限內(nèi)作等邊△OAB,點(diǎn)C為x軸上一動(dòng)點(diǎn),且在點(diǎn)A右側(cè),連接BC,以BC為邊在第一象限內(nèi)作等邊△BCD,連接AD交BC于E.

(1)①直接回答:△OBC與△ABD全等嗎?
②試說明:無論點(diǎn)C如何移動(dòng),AD始終與OB平行;
(2)當(dāng)點(diǎn)C運(yùn)動(dòng)到使AC2=AEAD時(shí),如圖2,經(jīng)過O、B、C三點(diǎn)的拋物線為y1 . 試問:y1上是否存在動(dòng)點(diǎn)P,使△BEP為直角三角形且BE為直角邊?若存在,求出點(diǎn)P坐標(biāo);若不存在,說明理由;

(3)在(2)的條件下,將y1沿x軸翻折得y2 , 設(shè)y1與y2組成的圖形為M,函數(shù)y= x+ m的圖象l與M有公共點(diǎn).試寫出:l與M的公共點(diǎn)為3個(gè)時(shí),m的取值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,點(diǎn)D是BC邊上的一個(gè)動(dòng)點(diǎn)(不與B、C重合),在AC上取一點(diǎn)E,使∠ADE=30°.

(1)求證:△ABD∽△DCE;
(2)設(shè)BD=x,AE=y,求y關(guān)于x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;
(3)當(dāng)△ADE是等腰三角形時(shí),求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,⊙O為等腰△ABC的外接圓,直徑AB=12,P為弧 上任意一點(diǎn)(不與B,C重合),直線CP交AB延長線于點(diǎn)Q,⊙O在點(diǎn)P處切線PD交BQ于點(diǎn)D,下列結(jié)論正確的是 . (寫出所有正確結(jié)論的序號(hào)) ①若∠PAB=30°,則弧 的長為π;②若PD∥BC,則AP平分∠CAB;
③若PB=BD,則PD=6 ;④無論點(diǎn)P在弧 上的位置如何變化,CPCQ為定值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y= x2+bx+c經(jīng)過點(diǎn)B(3,0),C(0,﹣2),直線l:y=﹣ x﹣ 交y軸于點(diǎn)E,且與拋物線交于A,D兩點(diǎn),P為拋物線上一動(dòng)點(diǎn)(不與A,D重合).

(1)求拋物線的解析式;
(2)當(dāng)點(diǎn)P在直線l下方時(shí),過點(diǎn)P作PM∥x軸交l于點(diǎn)M,PN∥y軸交l于點(diǎn)N,求PM+PN的最大值.
(3)設(shè)F為直線l上的點(diǎn),以E,C,P,F(xiàn)為頂點(diǎn)的四邊形能否構(gòu)成平行四邊形?若能,求出點(diǎn)F的坐標(biāo);若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)y= (x<0)的圖象經(jīng)過點(diǎn)A(﹣1,1),過點(diǎn)A作AB⊥y軸,垂足為B,在y軸的正半軸上取一點(diǎn)P(0,t),過點(diǎn)P作直線OA的垂線l,以直線l為對(duì)稱軸,點(diǎn)B經(jīng)軸對(duì)稱變換得到的點(diǎn)B′在此反比例函數(shù)的圖象上,則t的值是( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】[發(fā)現(xiàn)]如圖∠ACB=∠ADB=90°,那么點(diǎn)D在經(jīng)過A,B,C三點(diǎn)的圓上(如圖①)
[思考]如圖②,如果∠ACB=∠ADB=a(a≠90°)(點(diǎn)C,D在AB的同側(cè)),那么點(diǎn)D還在經(jīng)過A,B,C三點(diǎn)的⊙O上嗎?
我們知道,如果點(diǎn)D不在經(jīng)過A,B,C三點(diǎn)的圓上,那么點(diǎn)D要么在⊙O外,要么在⊙O內(nèi),以下該同學(xué)的想法說明了點(diǎn)D不在⊙O外.請(qǐng)結(jié)合圖④證明點(diǎn)D也不在⊙O內(nèi).
【證】
[結(jié)論]綜上可得結(jié)論,如果∠ACB=∠ADB=α(點(diǎn)C,D在AB的同側(cè)),那么點(diǎn)D在經(jīng)過A,B,C三點(diǎn)的圓上,即:A、B、C、D四點(diǎn)共圓.
[應(yīng)用]利用上述結(jié)論解決問題:
如圖⑤,已知△ABC中,∠C=90°,將△ACB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)α度(α為銳角)得△ADE,連接BE、CD,延長CD交BE于點(diǎn)F;
(1)用含α的代數(shù)式表示∠ACD的度數(shù);
(2)求證:點(diǎn)B、C、A、F四點(diǎn)共圓;
(3)求證:點(diǎn)F為BE的中點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直線y=﹣ x+2與拋物線y=a (x+2)2相交于A、B兩點(diǎn),點(diǎn)A在y軸上,M為拋物線的頂點(diǎn).

(1)請(qǐng)直接寫出點(diǎn)A的坐標(biāo)及該拋物線的解析式;
(2)若P為線段AB上一個(gè)動(dòng)點(diǎn)(A、B兩端點(diǎn)除外),連接PM,設(shè)線段PM的長為l,點(diǎn)P的橫坐標(biāo)為x,請(qǐng)求出l2與x之間的函數(shù)關(guān)系,并直接寫出自變量x的取值范圍;
(3)在(2)的條件下,線段AB上是否存在點(diǎn)P,使以A、M、P為頂點(diǎn)的三角形是等腰三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算: +|1﹣ |+ +( 1﹣20170

查看答案和解析>>

同步練習(xí)冊(cè)答案