【題目】在平面直角坐標系中,現(xiàn)將一塊等腰直角三角板ABC放在第二象限,斜靠在兩坐標軸上,點C為 (-1,0).如圖17所示,B點在拋物線圖象上,過點B作BD⊥x軸,垂足為D,且B點橫坐標為-3.
(1)求證:△BDC≌△COA;
(2)求BC所在直線的函數(shù)關系式;
(3)拋物線的對稱軸上是否存在點P,使△ACP是以AC為直角邊的直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.
【答案】(1)見解析;(2)(3)存在,P1(, )、P2(,)
【解析】
(1)由等腰直角三角形的性質(zhì),平角定義,直角三角形兩銳角的關系,可由AAS證得。
(2)求出點B的坐標,由點B、C的坐標,用待定系數(shù)法可求BC所在直線的函數(shù)關系式。
(3)分點C為直角頂點和點A為直角頂點兩種情況討論即可。
解:(1)證明:∵∠BCD+∠ACO=90°,∠ACO+∠OAC=90°,
∴∠BCD=∠OAC。
∵△ABC為等腰直角三角形 ,∴BC=AC。
在△BDC和△COA中,∠BDC=∠COA=90°,∠BCD=∠OAC,BC=AC,
∴△BDC≌△COA(AAS)。
(2)∵C點坐標為 (-1,0),∴BD=CO=1。
∵B點橫坐標為-3,∴B點坐標為 (-3,1)。
設BC所在直線的函數(shù)關系式為y=kx+b,
∴,解得!BC所在直線的函數(shù)關系式為y=-x-。
(3)存在 。
∵y=x2+x-2=(x+)2x-,∴對稱軸為直線x=-。
若以AC為直角邊,點C為直角頂點,對稱軸上有一點P1,使CP1⊥AC,
∵BC⊥AC,∴點P1為直線BC與對軸稱直線x=-的交點。
由題意可得:, 解得,!P1(-,-)。
若以AC為直角邊,點A為直角頂點,對稱軸上有一點P2,使AP2⊥AC,
則過點A作A P2∥BC,交對軸稱直線x=-于點P2,
∵CD=OA,∴A(0,2)。
設直線AP2的解析式為:y=-x+m,把A(0,2)代入得m=2。
∴直線AP2的解析式為:y=-x+2。
由題意可得:,解得,!P2(-,)。
∴P點坐標分別為P1(-,-)、P2(-,)。
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點O是△ABC的邊AB上一點,⊙O與半徑AC相切于點E,與邊BC、AB分別相交于點D、F,且DE=EF.
⑴求證:∠C=90o;
⑵當BC=2,sinA=時,求AF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著“三農(nóng)”問題的解決,某農(nóng)民近兩年的年收入發(fā)生了明顯變化,已知前年和去年的收入分別是60000元和80000元,下面是依據(jù)①②③三種農(nóng)作物每種作物每年的收入占該年年收入的比例繪制的扇形統(tǒng)計圖.依據(jù)統(tǒng)計圖得出的以下四個結論正確的是( )
A. ①的收入去年和前年相同
B. ③的收入所占比例前年的比去年的大
C. 去年②的收入為2.8萬
D. 前年年收入不止①②③三種農(nóng)作物的收入
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,把矩形紙片OABC放入平面直角坐標系中,使OA、OC分別落在x軸,y軸上,連OB,將紙片OABC沿OB折疊,使點A落在A′的位置,若OB=,tan∠BOC=,則點A′的坐標( )
A. (,) B. (﹣,) C. (﹣,) D. (﹣,)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y1=ax+b的圖象與反比例函數(shù)y2=的圖象交于點A(1,2)和B(﹣2,m).
(1)求一次函數(shù)和反比例函數(shù)的表達式;
(2)請直接寫出y1≥y2時x的取值范圍;
(3)過點B作BE∥x軸,AD⊥BE于點D,點C是直線BE上一點,若∠DAC=30°,求點C的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,△ABC內(nèi)接于⊙O,AB為直徑,∠CBA的平分線交AC于點F,交⊙O于點D,DE⊥AB于點E,且交AC于點P,連結AD.
(1)求證:∠DAC=∠DBA;
(2)求證:P是線段AF的中點;
(3)連接CD,若CD﹦3,BD﹦4,求⊙O的半徑和DE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商店以40元/千克的進價購進一批茶葉,經(jīng)調(diào)查發(fā)現(xiàn),在一段時間內(nèi),銷售量 (千克)與銷售價 (元/千克)成一次函數(shù)關系,其圖象如圖所示.
(1)求與之間的函數(shù)關系式(不必寫出自變量的取值范圍);
(2)若該商店銷售這批茶葉的成本不超過2800元,則它的最低銷售價應定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小明要統(tǒng)計小區(qū)500戶居民每月丟棄塑料袋的數(shù)量情況,他隨機調(diào)查了其中40戶居民,按每月丟棄的塑料袋的數(shù)量分組進行統(tǒng)計,并繪制了如下的頻數(shù)分布表和頻數(shù)分布直方圖:
根據(jù)以上提供的信息,解答下列問題:
(1)補全頻數(shù)分布表和頻數(shù)分布直方圖;
(2)這40戶家庭每月丟棄塑料袋數(shù)的中位數(shù)位于第 組;
(3)請你估算該小區(qū)每月丟棄塑料袋的數(shù)不少于40個的戶數(shù)大約有 __ 戶.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《中國漢字聽寫大會》喚醒了很多人對文字基本功的重視和對漢字文化的學習,我市某校組織了一次全校2000名學生參加的“漢字聽寫大會”海選比賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分,為了更好地了解本次海選比賽的成績分布情況,隨機抽取了其中200名學生的海選比賽成績(成績x取整數(shù),總分100分)作為樣本進行整理,得到下列統(tǒng)計圖表:
抽取的200名學生海選成績分組表
組別 | 海選成績x |
A組 | 50≤x<60 |
B組 | 60≤x<70 |
C組 | 70≤x<80 |
D組 | 80≤x<90 |
E組 | 90≤x≤100 |
請根據(jù)所給信息,解答下列問題:
(1)請把圖1中的條形統(tǒng)計圖補充完整;(溫馨提示:請畫在答題卷相對應的圖上)
(2)在圖2的扇形統(tǒng)計圖中,記表示B組人數(shù)所占的百分比為a%,則a的值為 ,表示C組扇形的圓心角θ的度數(shù)為 度;
(3)規(guī)定海選成績在90分以上(包括90分)記為“優(yōu)等”,請估計該校參加這次海選比賽的2000名學生中成績“優(yōu)等”的有多少人?
(4)經(jīng)過統(tǒng)計發(fā)現(xiàn),在E組中,有2位男生和2位女生獲得了滿分,如果從這4人中挑選2人代表學校參加比賽,請用樹狀圖或列表法求出所選兩人正好是一男一女的概率是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com