【題目】如圖,在梯形ABCD中,AD∥BC,BC=BD=10,CD=4,AD=6.點P是線段BD上的動點,點E、Q分別是線段DA、BD上的點,且DE=DQ=BP,聯結EP、EQ.
(1)求證:EQ∥DC;
(2)如果△EPQ是以EQ為腰的等腰三角形,求線段BP的長;
(3)當BP=m(0<m<5)時,求∠PEQ的正切值.(用含m的式子表示)
【答案】(1)見解析;(2);(3).
【解析】
(1)利用兩邊成比例且夾角相等可判定△DEQ ∽△BCD,從而證得結論;
(2)設BP的長為x,則DQ=x,QP=2x-10,利用(1)的結論△DEQ ∽△BCD,求得.分類討論:當EQ=EP、QE=QP時,分別求得答案即可;
(3)過點P作PH⊥EQ,交EQ的延長線于點H;過點B作BG⊥DC,垂足為點G,易證得△PHQ ∽△BGD,利用對應邊成比例通過計算得到的值,從而求得答案.
(1)∵AD//BC,∴∠EDQ=∠DBC.
∵,,∴.
∴△DEQ ∽△BCD.
∴∠DQE=∠BDC,
∴EQ//CD.
(2)設BP的長為x,則DQ=x,QP=2x-10.
∵△DEQ ∽△BCD,
∴,
∴.
(i)當EQ=EP時,
∴∠EQP =∠EPQ,
∵DE=DQ,∴∠EQP =∠QED,∴∠EPQ =∠QED,
∴△EQP ∽△DEQ,∴,∴,
解得 ,或(舍去).
(ii)當QE=QP時,
∴,解得 ,
∵,∴此種情況不存在.
∴
(3)過點P作PH⊥EQ,交EQ的延長線于點H;過點B作BG⊥DC,垂足為點G.
∵BD=BC,BG⊥DC,∴DG=2,BG,
∵BP= DQ=m,∴PQ=10-2m.
∵EQ∥DC∴∠PQH =∠BDG.
又∵∠PHQ =∠BGD= 90°,
∴△PHQ ∽△BGD.
∴,∴.
∴,.
∴,
∴
科目:初中數學 來源: 題型:
【題目】為了預防“流感”,某學校在休息日用“藥熏”消毒法對教室進行消毒.已知藥物釋放過程中,室內每立方米的含藥量y(毫克)與時間x(時)成正比例;藥物釋放結束后,y與x成反比例;如圖所示,根據圖中提供的信息,解答下列問題:
(1)寫出從藥物釋放開始,y與x之間的兩個函數解析式;
(2)據測定,當藥物釋放結束后,每立方米的含藥量降至0.25毫克以下時,學生方可進入教室,那么從藥物釋放開始,至少需要經過多長時間,學生才能進入教室?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在正方形ABCD中,N為邊AD上一點,連接BN.過點A作AP⊥BN于點P,連接CP,M為邊AB上一點,連接PM,∠PMA=∠PCB,連接CM,有以下結論:①△PAM∽△PBC;②PM⊥PC;③M、P、C、B四點共圓;④AN=AM.其中正確的個數為( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,在△ABC中,∠A>∠B,分別以點A,C為圓心,大于AC長為半徑畫弧,兩弧交于點P,點Q,作直線PQ交AB于點D,再分別以點B,D為圓心,大于BD長為半徑畫弧,兩弧交于點M,點N,作直線MN交BC于點E,若△CDE是等邊三角形,則∠A=_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,二次函數y=ax2+bx+ 的圖象經過A(﹣1,0),B(3,0),與y軸相交于點C.點P為第一象限的拋物線上的一個動點,過點P分別做BC和x軸的垂線,交BC于點E和F,交x軸于點M和N.
(1)求這個二次函數的解析式;
(2)求線段PE最大值,并求出線段PE最大時點P的坐標;
(3)若S△PMN=3S△PEF時,求出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用32m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設AB=xm.
(Ⅰ)若花園的面積是252m2,求AB的長;
(Ⅱ)當AB的長是多少時,花園面積最大?最大面積是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一小球沿與地面成一定角度的方向飛出,小球的飛行路線是一條拋物線,如果不考慮空氣阻力,小球的飛行高度y(單位:m)與飛行時間x(單位:s)之間具有函數關系y=﹣5x2+20x,請根據要求解答下列問題:
(1)在飛行過程中,當小球的飛行高度為15m時,飛行時間是多少?
(2)在飛行過程中,小球從飛出到落地所用時間是多少?
(3)在飛行過程中,小球飛行高度何時最大?最大高度是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】拋物線y=ax2-4ax+4(a≠0)與y軸交于點A.過點B(0,3)作y軸的垂線l,若拋物線y=ax2-4ax+4(a≠0)與直線l有兩個交點,設其中靠近y軸的交點的橫坐標為m,且│m│<1,則a的取值范圍是______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數的圖象與反比例函數的圖象交于A(2,﹣4),B(m, 2)兩點.當x滿足條件______________時,一次函數的值大于反比例函數值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com