【題目】如圖,二次函數(shù)yax2+bx+ 的圖象經(jīng)過A(﹣1,0),B3,0),與y軸相交于點C.點P為第一象限的拋物線上的一個動點,過點P分別做BCx軸的垂線,交BC于點EF,交x軸于點MN

1)求這個二次函數(shù)的解析式;

2)求線段PE最大值,并求出線段PE最大時點P的坐標;

3)若SPMN3SPEF時,求出點P的坐標.

【答案】(1);(2的最大值為,點.3

【解析】

1)根據(jù)點AB的坐標,利用待定系數(shù)法即可求出二次函數(shù)的解析式;

2)利用二次函數(shù)圖象上點的坐標特征可求出點C的坐標,由OB,OC的長可得出∠ABC=30°,結(jié)合PNx軸,PEBC可得出PE=PF,由點B,C的坐標,利用待定系數(shù)法可求出直線BC的解析式,設點P的坐標為(x,),則點F的坐標為(x,-),進而可得出PE=-x2+x,再利用二次函數(shù)的性質(zhì),即可解決最值問題;

3)由∠PEF=PNM,∠P=P可得出PEF∽△PNM,利用相似三角形的性質(zhì)結(jié)合SPMN=3SPEF可得出PN=PE,再結(jié)合(2)可得出關(guān)于x的一元二次方程,解之取其較小值即可得出x的值,將其代入點P的坐標中即可得出結(jié)論.

1)將A-1,0),B3,0)代入y=ax2+bx+,得:

,解得:,

∴二次函數(shù)的解析式為

2)∵當時,,

,

軸,

,

又∵,

,

,直線的解析式為,

,

,

∴當x=時,PE取得最大值,的最大值為,此時點P的坐標為.

3)∵,

,

,

由(2)得

解得,(舍去),

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,四邊形是正方形,且,點重合,以為圓心,作半徑長為5的半圓,交于點,交于點,交的延長線于點.

發(fā)現(xiàn)是半圓上任意一點,連接,則的最大值為______;

思考如圖2,將半圓繞點逆時針旋轉(zhuǎn),記旋轉(zhuǎn)角為

1)當時,求半圓落在正方形內(nèi)部的弧長;

2)在旋轉(zhuǎn)過程中,若半圓與正方形的邊相切時,請直接寫出此時點到切點的距離.(注:,,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=5,AD=3,動點P在直線AB上方,且滿足SPABS矩形ABCD=13,則使△PAB為直角三角形的點P(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在如圖所示的半圓中,P是直徑AB上一動點,過點PPCAB于點P,交半圓于點C,連接AC.已知AB=6cm,設A,P兩點間的距離為xcm,P,C兩點間的距離為y1cmA,C兩點間的距離為y2cm

小聰根據(jù)學習函數(shù)的經(jīng)驗,分別對函數(shù)y1,y2隨自變量x的變化而變化的規(guī)律進行了探究.

下面是小聰?shù)奶骄窟^程,請補充完整:

1)按照下表中自變量x的值進行取點、畫圖、測量,分別得到了y1,y2x的幾組對應值;

x/cm

0

1

2

3

4

5

6

y1/cm

0

2.24

2.83

2.83

2.24

0

y2/cm

0

2.45

3.46

4.24

4.90

5.48

6

2)在同一平面直角坐標系xOy中,描出補全后的表中各組數(shù)值所對應的點(xy1),(x,y2),并畫出函數(shù)y1,y2的圖象;

3)結(jié)合函數(shù)圖象,解決問題:當APC有一個角是30°時,AP的長度約為 cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學生的興趣愛好,根據(jù)調(diào)查的結(jié)果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖,要求每位學生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:

(1)九(1)班的學生人數(shù)為   ,并把條形統(tǒng)計圖補充完整;

(2)扇形統(tǒng)計圖中m=   ,n=   ,表示“足球”的扇形的圓心角是   度;

(3)排球興趣小組4名學生中有3男1女,現(xiàn)在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩個工程隊原計劃修建一條長100千米的公路,由于實際情況,進行了兩次改道,每次改道以相同的百分率增加修路長度,使得實際修建長度為121千米,已知甲工程隊每天比乙工程隊每天多修路0.5千米,乙工程隊單獨完成修路任務所需天數(shù)是甲工程隊單獨完成修路任務所需天數(shù)的1.5倍。

1)求兩次改道的平均增長率;

2)求甲、乙兩個工程隊每天各修路多少千米?

3)若甲工程隊每天的修路費用為0.5萬元,乙工程隊每天的修路費用為0.4萬元,要使兩個工程隊修路總費用不超過42.4萬元,甲工程隊至少修路多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的角平分線, ,延長線上,且,若,則的長為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知反比例函數(shù)的圖象經(jīng)過點,點與點關(guān)于原點對稱,一次函數(shù)的圖象經(jīng)過點,交反比例函數(shù)圖象于點,連接.

(1)求反比例函數(shù)與一次函數(shù)的表達式;

(2)的面積;

(3)直接寫出當時,的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A是反比例函數(shù)y圖象上一點,過點Ax軸的平行線交反比例函數(shù)y=﹣的圖象于點B,點Cx軸上,且SABC,則k=( 。

A. 6B. 6C. D.

查看答案和解析>>

同步練習冊答案