已知梯形ABCD中,ADBC,∠ABC=60°,BD=2
3
,AE為梯形的高,且BE=1,則AD=______.
如圖,作DF⊥BC,
∵∠ABC=60°,
∴∠BAD=120°,∠BAE=30°,
∴AB=2,AE=
3
,
在△BDF中BF=
12-3
=3,
∴EF=3-1=2,
∵AD=EF,
∴AD=2.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在等腰梯形ABCD中,ABDC,AB=10cm,CD=4cm,點(diǎn)P從點(diǎn)A出發(fā),以1.5cm/秒的速度沿AB向終點(diǎn)B運(yùn)動(dòng);點(diǎn)Q從點(diǎn)C出發(fā),以1cm/秒的速度沿CD向終點(diǎn)D運(yùn)動(dòng)(P、Q兩點(diǎn)中,有一個(gè)點(diǎn)運(yùn)動(dòng)到終點(diǎn)時(shí),所有運(yùn)動(dòng)即終止),設(shè)P、Q同時(shí)出發(fā)并運(yùn)動(dòng)了t秒:
(1)當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)D時(shí),PQ把梯形分成兩個(gè)特殊圖形是______、______;
(2)過點(diǎn)D作DE⊥AB,垂足為E,當(dāng)四邊形DEPQ是矩形時(shí),求t的值;
(3)探索:是否存在這樣的t值,使四邊形PBCQ的面積是四邊形APQD面積的2倍?若存在,求出t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,已知ABCD,點(diǎn)E為BC的中點(diǎn),設(shè)△DEA的面積為S1,梯形ABCD的面積為S2,則S1與S2的數(shù)量關(guān)系為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在直角梯形ABCD中,ADBC,AB⊥AD,BC=CD,BE⊥CD,垂足為E,點(diǎn)F在BD上,連接AF、EF.
(1)求證:DA=DE;
(2)如果AFCD,求證:四邊形ADEF是菱形.
(3)如果∠C=60°,EC=3,求AB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,在直角梯形ABCD中,ABCD,∠B=∠C=90°,AD=20,BC=10,則∠A和∠D分別是(  )
A.30°,150°B.45°,135°C.120°,60°D.150°,30°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,AD=3厘米,AB=a厘米(a>3).動(dòng)點(diǎn)M,N同時(shí)從B點(diǎn)出發(fā),分別沿B?A,B?C運(yùn)動(dòng),速度是1厘米/秒.過M作直線垂直于AB,分別交AN,CD于P,Q.當(dāng)點(diǎn)N到達(dá)終點(diǎn)C時(shí),點(diǎn)M也隨之停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)若a=4厘米,t=1秒,則PM=______厘米;
(2)若a=5厘米,求時(shí)間t,使△PNB△PAD,并求出它們的相似比;
(3)若在運(yùn)動(dòng)過程中,存在某時(shí)刻使梯形PMBN與梯形PQDA的面積相等,求a的取值范圍;
(4)是否存在這樣的矩形:在運(yùn)動(dòng)過程中,存在某時(shí)刻使梯形PMBN,梯形PQDA,梯形PQCN的面積都相等?若存在,求a的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:在梯形ABCD中,CDAB,點(diǎn)F在AB上.CF=BF,且CE⊥BC交AD于E,連接EF.已知EF⊥CE,
(1)若CF=10,CE=8,求BC的長.
(2)若點(diǎn)E是AD的中點(diǎn),求證:AF+DC=BF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

梯形中位線長10,一對角線把它分成2:3,則梯形較長的底邊為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

已知等腰梯形的銳角等于60°,它的兩底長分別為15cm和49cm,則它的一腰長為( 。
A.49cmB.15cmC.32cmD.34cm

查看答案和解析>>

同步練習(xí)冊答案