【題目】△ABC中,AB=AC=12厘米,∠B=∠C,BC=9厘米,點(diǎn)DAB的中點(diǎn)如果點(diǎn)P在線段BC上以v厘米秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng)若點(diǎn)Q的運(yùn)動(dòng)速度為3厘米秒,則當(dāng)△BPD與△CQP全等時(shí),v的值為( )

A. 2.5 B. 3 C. 2.25或3 D. 1或5

【答案】C

【解析】分兩種情況討論:①若BPD≌△CPQ,根據(jù)全等三角形的性質(zhì),則BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),根據(jù)速度、路程、時(shí)間的關(guān)系即可求得;②若BPD≌△CQP,則CP=BD=6厘米,BP=CQ,得出,解得:v=3.

∵△ABC中,AB=AC=12厘米,點(diǎn)DAB的中點(diǎn),

BD=6厘米,

BPD≌△CPQ,則需BD=CQ=6厘米,BP=CP=BC=×9=4.5(厘米),

∵點(diǎn)Q的運(yùn)動(dòng)速度為3厘米/秒,

∴點(diǎn)Q的運(yùn)動(dòng)時(shí)間為:6÷3=2(s),

v=4.5÷2=2.25(厘米/秒);

BPD≌△CQP,則需CP=BD=6厘米,BP=CQ,

,

解得:v=3;

v的值為:2.253,

故選:C.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀理解:德國(guó)著名數(shù)學(xué)家高斯被認(rèn)為是歷史上最重要的數(shù)學(xué)家之一,并有"數(shù)學(xué)王子"的美譽(yù).高斯從小就善于觀察和思考.在他讀小學(xué)時(shí)候就能在課堂上快速的計(jì)算出,今天我們可以將高斯的做法歸納如下:

(右邊相加100+1=2+99=3+98=…..=100+1100組)

①+②:有2S=101x100 解得:

(1)請(qǐng)參照以上做法,回答,3+5+7+9+…..+97= ;

請(qǐng)嘗試解決下列問題:

如下圖,有一個(gè)形如六邊形的點(diǎn)陣,它的中心是一個(gè)點(diǎn),算第一層,第二層每邊有兩個(gè)點(diǎn),第三層每邊有三個(gè)點(diǎn),依此類推.

(2)填寫下表:

層數(shù)

1

2

3

4

該層對(duì)應(yīng)的點(diǎn)數(shù)

1

6

12

18

所有層的總點(diǎn)數(shù)的和

1

7

19

寫出第n層所對(duì)應(yīng)的點(diǎn)數(shù);n≥2)

②如果某一層共96個(gè)點(diǎn),求它是第幾層;

③寫出n層的六邊形點(diǎn)陣的總點(diǎn)數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著我市社會(huì)經(jīng)濟(jì)的發(fā)展和交通狀況的改善,我市的旅游業(yè)得到了高速發(fā)展某旅游公司對(duì)我市一企業(yè)個(gè)人旅游年消費(fèi)情況進(jìn)行問卷調(diào)查隨機(jī)抽取部分員工,記錄每個(gè)人年消費(fèi)金額,并將調(diào)查數(shù)據(jù)適當(dāng)整理,繪制成如下兩幅尚不完整的表和圖:

組別

個(gè)人年消費(fèi)金額

頻數(shù)

頻率

A

18

B

a

b

C

D

24

E

12

合計(jì)

c

根據(jù)以上信息解答下列問題:

________; ________; ________;

補(bǔ)全頻數(shù)分布直方圖;

若這個(gè)企業(yè)有3000名員工,請(qǐng)你估計(jì)個(gè)人旅游年消費(fèi)金額在6000元以上的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1=﹣x2+4x和直線y2=2x.我們約定:當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1、y2 , 若y1≠y2 , 取y1、y2中的較小值記為M;若y1=y2 , 記M=y1=y2 . 下列判斷: ①當(dāng)x>2時(shí),M=y2
②當(dāng)x<0時(shí),x值越大,M值越大;
③使得M大于4的x值不存在;
④若M=2,則x=1.
其中正確的有(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,∠ACB=90°D、E分別是BC、BA的中點(diǎn),連接DE,FDE延長(zhǎng)線上,且AF=AE.求證:四邊形ACEF是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,直線y=kx+b(k≠0)與雙曲線y= (m≠0)交于點(diǎn)A(2,﹣3)和點(diǎn)B(n,2).
(1)求直線與雙曲線的表達(dá)式;
(2)對(duì)于橫、縱坐標(biāo)都是整數(shù)的點(diǎn)給出名稱叫整點(diǎn).動(dòng)點(diǎn)P是雙曲線y= (m≠0)上的整點(diǎn),過點(diǎn)P作垂直于x軸的直線,交直線AB于點(diǎn)Q,當(dāng)點(diǎn)P位于點(diǎn)Q下方時(shí),請(qǐng)直接寫出整點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過A(﹣2,0),B(4,0),C(0,3)三點(diǎn).

(1)求該拋物線的解析式;
(2)在y軸上是否存在點(diǎn)M,使△ACM為等腰三角形?若存在,請(qǐng)直接寫出所有滿足要求的點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)P(t,0)為線段AB上一動(dòng)點(diǎn)(不與A,B重合),過P作y軸的平行線,記該直線右側(cè)與△ABC圍成的圖形面積為S,試確定S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為深化義務(wù)教育課程改革,滿足學(xué)生的個(gè)性化學(xué)習(xí)需求,某校就“學(xué)生對(duì)知識(shí)拓展,體育特長(zhǎng)、藝術(shù)特長(zhǎng)和實(shí)踐活動(dòng)四類選課意向”進(jìn)行了抽樣調(diào)查(每人選報(bào)一類),繪制了如圖所示的兩幅統(tǒng)計(jì)圖(不完整),請(qǐng)根據(jù)圖中信息,解答下列問題:
(1)求扇形統(tǒng)計(jì)圖中m的值,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)在被調(diào)查的學(xué)生中,隨機(jī)抽一人,抽到選“體育特長(zhǎng)類”或“藝術(shù)特長(zhǎng)類”的學(xué)生的概率是多少?
(3)已知該校有800名學(xué)生,計(jì)劃開設(shè)“實(shí)踐活動(dòng)類”課程每班安排20人,問學(xué)校開設(shè)多少個(gè)“實(shí)踐活動(dòng)類”課程的班級(jí)比較合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,BD為△ABC的角平分線,且BD=BC,E為BD延長(zhǎng)線上的一點(diǎn),BE=BA,過E作EF⊥AB,F(xiàn)為垂足,下列結(jié)論:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=EF=EC;④BA+BC=2BF,其中正確的結(jié)論有________(填序號(hào)).

查看答案和解析>>

同步練習(xí)冊(cè)答案