【題目】如圖,在四邊形ABCD中,AD∥BC,DE⊥BC,垂足為點(diǎn)E,連接AC交DE于點(diǎn)F,點(diǎn)G為AF的中點(diǎn),∠ACD=2∠ACB.若DG=3,EC=1,則DE的長(zhǎng)為( )
A.
B.
C.
D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB為⊙O的直徑,F(xiàn)為⊙O上一點(diǎn),AC平分∠BAF且交⊙O于點(diǎn)C,過(guò)點(diǎn)C作CD⊥AF于點(diǎn)D,延長(zhǎng)AB、DC交于點(diǎn)E,連接BC,CF.
(1)求證:CD是⊙O的切線;
(2)若AD=6,DE=8,求BE的長(zhǎng);
(3)求證:AF+2DF=AB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,某教學(xué)活動(dòng)小組選定測(cè)量山頂鐵塔AE的高,他們?cè)?0m高的樓CD的底部點(diǎn)D測(cè)得塔頂A的仰角為45°,在樓頂C測(cè)得塔頂A的仰角為36°52′.若小山高BE=62m,樓的底部D與山腳在同一水平面上,求鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】高鐵的開(kāi)通,給衢州市民出行帶來(lái)了極大的方便,“五一”期間,樂(lè)樂(lè)和穎穎相約到杭州市的某游樂(lè)園游玩,樂(lè)樂(lè)乘私家車從衢州出發(fā)1小時(shí)后,穎穎乘坐高鐵從衢州出發(fā),先到杭州火車站,然后再轉(zhuǎn)車出租車去游樂(lè)園(換車時(shí)間忽略不計(jì)),兩人恰好同時(shí)到達(dá)游樂(lè)園,他們離開(kāi)衢州的距離y(千米)與乘車時(shí)間t(小時(shí))的關(guān)系如圖所示. 請(qǐng)結(jié)合圖象解決下面問(wèn)題:
(1)高鐵的平均速度是每小時(shí)多少千米?
(2)當(dāng)穎穎達(dá)到杭州火車東站時(shí),樂(lè)樂(lè)距離游樂(lè)園還有多少千米?
(3)若樂(lè)樂(lè)要提前18分鐘到達(dá)游樂(lè)園,問(wèn)私家車的速度必須達(dá)到多少千米/小時(shí)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18℃的條件下生長(zhǎng)最快的新品種,下圖是某天恒溫系統(tǒng)從開(kāi)啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y(℃)隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段是雙曲線y= 的一部分.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:
(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18℃的時(shí)間有多少小時(shí)?
(2)求k的值;
(3)當(dāng)x=18時(shí),大棚內(nèi)的溫度約為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)D是BC的中點(diǎn),點(diǎn)E,F(xiàn)分別在線段AD及其延長(zhǎng)線上,且DE=DF.給出下列條件:①BE⊥EC;②BF∥CE;③AB=AC;從中選擇一個(gè)條件使四邊形BECF是菱形,你認(rèn)為這個(gè)條件是(只填寫(xiě)序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當(dāng)陽(yáng)光與水平線成45°角時(shí),測(cè)得鐵塔AB落在斜坡上 的影子BD的長(zhǎng)為6米,落在廣告牌上的影子CD的長(zhǎng)為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是⊙O的內(nèi)接四邊形,∠ABD=∠CBD=60°,AC與BD相交于點(diǎn)E,過(guò)點(diǎn)C作⊙O的切線,與AB的延長(zhǎng)線相交于點(diǎn)F.
(1)判斷△ACD的形狀,并加以證明
(2)若CF=2,DE=4,求弦CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在ABCD中,AB<BC,已知∠B=30°,AB=,將△ABC沿AC翻折至△AB′C,使點(diǎn)B′落在ABCD所在的平面內(nèi),連接B′D.若△AB′D是直角三角形,則BC的長(zhǎng)為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com