【題目】如圖所示,某教學活動小組選定測量山頂鐵塔AE的高,他們在30m高的樓CD的底部點D測得塔頂A的仰角為45°,在樓頂C測得塔頂A的仰角為36°52′.若小山高BE=62m,樓的底部D與山腳在同一水平面上,求鐵塔的高AE.(參考數據:sin36°52′≈0.60,tan36°52′≈0.75)
【答案】解:如圖,過點C作CF⊥AB于點F.
設塔高AE=x,作CF⊥AB于點F,
則四邊形BDCF是矩形,
∴CD=BF=30m,CF=BD,
∵在Rt△ADB中,∠ADB=45°,
∴AB=BD=x+62,
∵在Rt△ACF中,∠ACF=36°52′,CF=BD=x+62,AF=x+62﹣30=x+32,
∴tan36°52′= ≈0.75,
∴x=58.
答:該鐵塔的高AE為58米.
【解析】根據樓高和山高可求出EF,繼而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根據CF=BD可建立方程,解出即可.
【考點精析】認真審題,首先需要了解關于仰角俯角問題(仰角:視線在水平線上方的角;俯角:視線在水平線下方的角).
科目:初中數學 來源: 題型:
【題目】“上海迪士尼樂園”將于2016年6月16日開門迎客,小明準備利用暑假從距上海2160千米的某地去“上海迪士尼樂園”參觀游覽,下圖是他在火車站咨詢得到的信息:
根據上述信息,求小明乘坐城際直達動車到上海所需的時間.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠ABC=30°,AB=2.將△ABC繞直角頂點C逆時針旋轉60°得△A′B′C′,則點B轉過的路徑長為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在方格紙中,每個小正方形的邊長均為1個單位長度有一個△ABC,它的三個頂點均與小正方形的頂點重合.
(1)將△ABC向右平移3個單位長度,得到△DEF(A與D、B與E、C與F對應),請在方格紙中畫出△DEF;
(2)在(1)的條件下,連接AE和CE,請直接寫出△ACE的面積S,并判斷B是否在邊AE上.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,這是一把可調節(jié)座椅的側面示意圖,已知頭枕上的點A到調節(jié)器點O處的距離為80cm,AO與地面垂直,現調整靠背,把OA繞點O旋轉35°到OA′處,求調整后點A′比調整前點A的高度降低了多少厘米(結果取整數)? (參考數據:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,正六邊形ABCDEF在直角坐標系內的位置如圖所示,A(﹣2,0),點B在原點,把正六邊形ABCDEF沿x軸正半軸作無滑動的連續(xù)翻轉,每次翻轉60°,經過2015次翻轉之后,點B的坐標是 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC,DE⊥BC,垂足為點E,連接AC交DE于點F,點G為AF的中點,∠ACD=2∠ACB.若DG=3,EC=1,則DE的長為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1所示,已知拋物線y=﹣x2+bx+c與x軸交于A(﹣1,0)、B(5,0)兩點,與y軸交于C點,D為拋物線的頂點,E為拋物線上一點,且C、E關于拋物線的對稱軸對稱,分別作直線AE、DE.
(1)求此二次函數的關系式;
(2)在圖1中,直線DE上有一點Q,使得△QCO≌△QBO,求點Q的坐標;
(3)如圖2,直線DE與x軸交于點F,點M為線段AF上一個動點,有A向F運動,速度為每秒2個單位長度,運動到F處停止,點N由F處出發(fā),沿射線FE方向運動,速度為每秒 個單位長度,M、N兩點同時出發(fā),運動時間為t秒,當M停止時點N同時停止運動坐標平面內有一個動點P,t為何值時,以P、M、N、F為頂點的四邊形是特殊的平行四邊形.請直接寫出t值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com