【題目】如圖,在△ABC中,∠ABC=90°,BC=6,D為AC延長(zhǎng)線上一點(diǎn),AC=3CD,過(guò)點(diǎn)D作DH∥AB,交BC的延長(zhǎng)線于點(diǎn)H.

(1)求BH的長(zhǎng);
(2)若AB=12,試判斷∠CBD與∠A的數(shù)量關(guān)系,請(qǐng)說(shuō)明理由.

【答案】
(1)解:∵DH∥AB,

∴△ABC∽△DHC,

,

∵BC=6,AC=3CD,

∴CH=2,

∴BH=BC+CH=6+2=8;


(2)解:∠CBD=∠A,

理由是:∵AC=3CD,△ABC∽△DHC,

=3,

∵AB=12,

∴DH=4,

∵DH∥AB,∠ABC=90°,

∴∠ABC=∠H=90°,

∵AB=12,BC=6,BH=8,DH=4,

∴tan∠CND= ,tanA= ,

∴∠CBD=∠A.


【解析】(1)由已知條件DH∥AB,得出△ABC∽△DHC,再得對(duì)應(yīng)邊成比列,建立方程,即可求出BH的長(zhǎng)。
(2)先由△ABC∽△DHC,得出對(duì)應(yīng)邊成比例,求出AB的長(zhǎng),再證明∠H=90°,然后利用三角函數(shù)的定義分別求出tan∠CND,tanA的值,即可得出∠CBD與∠A的數(shù)量關(guān)系。
【考點(diǎn)精析】本題主要考查了平行線的性質(zhì)和相似三角形的判定的相關(guān)知識(shí)點(diǎn),需要掌握兩直線平行,同位角相等;兩直線平行,內(nèi)錯(cuò)角相等;兩直線平行,同旁內(nèi)角互補(bǔ);相似三角形的判定方法:兩角對(duì)應(yīng)相等,兩三角形相似(ASA);直角三角形被斜邊上的高分成的兩個(gè)直角三角形和原三角形相似; 兩邊對(duì)應(yīng)成比例且?jiàn)A角相等,兩三角形相似(SAS);三邊對(duì)應(yīng)成比例,兩三角形相似(SSS)才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市計(jì)劃在城區(qū)投放一批共享單車(chē),這批單車(chē)分為A,B兩種不同款型,其中A型車(chē)單價(jià)400元,B型車(chē)單價(jià)320元.

1)在共享單車(chē)試點(diǎn),投放A,B兩種款型的單車(chē)共100輛,總價(jià)值36 800元.試問(wèn)本次試點(diǎn)投放的A型車(chē)與B型車(chē)各多少輛?

設(shè)本次試點(diǎn)投放的A型車(chē)輛、B型車(chē)輛.

根據(jù)題意,列方程組___________

解這個(gè)方程組,得___________

答:

2)該市決定在整個(gè)城區(qū)投放共享單車(chē).按照(Ⅰ)中試點(diǎn)投放A,B兩車(chē)型的數(shù)量比進(jìn)行投放,且投資總價(jià)值不低于184萬(wàn)元.請(qǐng)問(wèn)整個(gè)城區(qū)投放的A型車(chē)至少多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,在銳角△ABC中,D,E分別為AB,BC中點(diǎn),F(xiàn)為AC上一點(diǎn),且∠AFE=∠A,DM∥EF交AC于點(diǎn)M.

(1)求證:DM=DA;
(2)如圖②,點(diǎn)G在BE上,且∠BDG=∠C.求證:△DEG∽△ECF;
(3)在(2)的條件下,已知EF=2,CE=3,求GE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,中,上一點(diǎn),連接,,點(diǎn)上,連接BE,C=DEB,若BE=3,AB=4,則線段AE的長(zhǎng)為_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在邊長(zhǎng)為 1 的正方形網(wǎng)格中,三角形 ABC 中任意一點(diǎn) P(x0,y0)經(jīng)平移后對(duì)應(yīng)點(diǎn)為 P1(x0-4,y03),已知 A(0,2),B(4,0),C(-1-1),將三角形 ABC 作同樣的平移得到三角形 A1B1C1

(1)直接寫(xiě)出坐標(biāo):A1( ),B1( ),C1( , )

(2)三角形 A1B1C1 的面積為 ;

(3)已知點(diǎn) P y 軸上,且三角形 PAC 的面積等于三角形 ABC 面積的一半,求 P 點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,PQ為圓O的直徑,點(diǎn)B在線段PQ的延長(zhǎng)線上,OQ=QB=1,動(dòng)點(diǎn)A在圓O的上半圓運(yùn)動(dòng)(含P、Q兩點(diǎn)),

(1)當(dāng)線段AB所在的直線與圓O相切時(shí),求弧AQ的長(zhǎng)(圖1);
(2)若∠AOB=120°,求AB的長(zhǎng)(圖2);

(3)如果線段AB與圓O有兩個(gè)公共點(diǎn)A、M,當(dāng)AO⊥PM于點(diǎn)N時(shí),求tan∠MPQ的值(圖3).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直角坐標(biāo)系中,△ABC的頂點(diǎn)都在網(wǎng)格點(diǎn)上,其中,C點(diǎn)坐標(biāo)為(12).

1)寫(xiě)出點(diǎn)A、B的坐標(biāo):A   ,   )、B      );

2)求△ABC的面積;

3)將△ABC先向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到△ABC′,畫(huà)出△ABC′,寫(xiě)出A′、B′、C′三個(gè)點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圖形中, 不是同位角的是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】你能找出規(guī)律嗎?

1)計(jì)算:= = ,= =

2)請(qǐng)按找到的規(guī)律計(jì)算:;

3)已知:a=b=,則= (用含a、b的式子表示)

查看答案和解析>>

同步練習(xí)冊(cè)答案