【題目】關(guān)于x的方程ax2+bx+c=0(a0).
(1)已知a,c異號,試說明此方程根的情況.
(2)若該方程的根是x1=-1,x2=3,試求方程a(x+2)2+bx+2b+c=0的根.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,正方形的頂點的坐標為,點在軸正半軸上,點在第三象限的雙曲線上,過點作軸交雙曲線于點,連接,則的面積為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著龍蝦節(jié)的火熱舉辦,某龍蝦養(yǎng)殖大戶為了發(fā)揮技術(shù)優(yōu)勢,一次性收購了10000kg小龍蝦,計劃養(yǎng)殖一段時間后再出售.已知每天養(yǎng)殖龍蝦的成本相同,放養(yǎng)10天的總成本為166000,放養(yǎng)30天的總成本為178000元.設(shè)這批小龍蝦放養(yǎng)t天后的質(zhì)量為akg,銷售單價為y元/kg,根據(jù)往年的行情預(yù)測,a與t的函數(shù)關(guān)系為a= ,y與t的函數(shù)關(guān)系如圖所示.
(1)設(shè)每天的養(yǎng)殖成本為m元,收購成本為n元,求m與n的值;
(2)求y與t的函數(shù)關(guān)系式;
(3)如果將這批小龍蝦放養(yǎng)t天后一次性出售所得利潤為W元.問該龍蝦養(yǎng)殖大戶將這批小龍蝦放養(yǎng)多少天后一次性出售所得利潤最大?最大利潤是多少?
(總成本=放養(yǎng)總費用+收購成本;利潤=銷售總額﹣總成本)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,如圖, 在中, ,,,P是邊BC上的一動點,過點P作PE⊥AB,垂足為E,延長PE至點Q,使PQ=PC, 聯(lián)結(jié)交邊AB于點.
(1)求AD的長;
(2)設(shè),的面積為y, 求y關(guān)于x的函數(shù)解析式,并寫出定義域;
(3)過點C作, 垂足為F, 聯(lián)結(jié)PF、QF, 試探索當點P在邊BC的什么位置時,為等邊三角形?請指出點P的位置并加以證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將一張正三角形紙片剪成四個小正三角形,得到個小正三角形,稱為第一次操作; 然后,將其中的一個正三角形再剪成四個小正三角形,共得到個小正三角形,稱為第二次操作;再將其中的一個正三角形再剪成四個小正三角形,共得到個小正三角形,稱為第三次操作;…,根據(jù)以上操作,若要得到個小正三角形,則需要操作的次數(shù)是__________次.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸上線段的長度可以用線段端點表示的數(shù)進行減法運算得到,例如:如圖①,若點在數(shù)軸上分別對應(yīng)的數(shù)為,則的長度可以表示為.
請你用以上知識解決問題:
如圖②,一個點從數(shù)軸上的原點開始,先向左移動個單位長度到達點,再向右移動個單位長度到達點,然后向右移動個單位長度到達點.
請你在圖②的數(shù)軸上表示出三點的位置.
若點以每秒個單位長度的速度向左移動,同時,點和點分別以每秒個單位長度和個單位長度的速度向右移動,設(shè)移動時間為秒.
①當時,求和的長度;
②試探究:在移動過程中,的值是否隨著時間的變化而改變?若變化,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )
A. 如圖1,展開后測得∠1=∠2
B. 如圖2,展開后測得∠1=∠2且∠3=∠4
C. 如圖3,測得∠1=∠2
D. 如圖4,展開后再沿CD折疊,兩條折痕的交點為O,測得OA=OB,OC=OD
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠CAB=∠DBA,再添加一個條件,不一定能判定△ABC≌△BAD的是( 。
A. AC=BDB. ∠1=∠2C. AD=BCD. ∠C=∠D
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com