【題目】如圖,在長方形ABCD中,AB=6厘米,AD=8厘米.延長BC到點E,使CE=3厘米,連接DE.動點P從B點出發(fā),以2厘米/秒的速度向終點C勻速運動,連接DP.設運動時間為t秒,解答下列問題:
(1)當t為何值時,△PCD為等腰直角三角形?
(2)設△PCD的面積為S(平方厘米),試確定S與t的關系式;
(3)當t為何值時,△PCD的面積為長方形ABCD面積的?
(4)若動點P從點B出發(fā),以2厘米/秒的速度沿BC﹣CD﹣DA向終點A運動,是否存在某一時刻t,使△ABP和△DCE全等?若存在,請求出t的值;若不存在,請說明理由.
【答案】(1)t=1秒;(2)S=﹣6t+24(0≤t≤4);(3)t=2秒;(4)t=秒或秒時,△ABP和△DCE全等.
【解析】
(1)用含t的式子表示PC,再根據(jù)△CDP是等腰直角三角形得到CP=CD=6,解出t即可;(2)利用S△PCD=CP×CD即可求解;(3)根據(jù)面積的關系即可列式求解;(4)根據(jù)對應點不同分兩種情況討論即可求解.
(1)在長方形ABCD中,AB=6厘米,AD=8厘米,
∴BC=AD=8cm,CD=AB=6cm,∠DCB=∠DCE=90°,
由運動知,BP=2t,
∴PC=BC﹣BP=8﹣2t,
∴△CDP是等腰直角三角形,
∴CP=CD=6,
∴8﹣2t=6,
∴t=1秒,
(2)由(1)知,PC=8﹣2t,
∴S=S△PCD=CP×CD=(8﹣2t)×6=﹣6t+24(0≤t≤4);
(3)∵AB=6,AD=8,
∴S長方形ABCD=6×8=48cm2,
由(2)知,S=﹣6t+24(0≤t≤4),
∵△PCD的面積為長方形ABCD面積的,
∴﹣6t+24=×48,
∴t=2秒,
(4)在△ABP中,AB=6cm,在△CDE中,CD=6cm,
∴AB=CD,
∵△ABP和△DCE全等,
∴△ABP≌△DCE或△ABP≌△CDE,
當△ABP≌△DCE時,BP=CE=3,
∴2t=3,
∴t=,
當△ABP≌△CDE時,AP=CE=3,
∴8+6+8﹣2t=3,
∴t=,
即:t=秒或秒時,△ABP和△DCE全等.
科目:初中數(shù)學 來源: 題型:
【題目】利用勾股定理可以在數(shù)軸上畫出表示的點,請依據(jù)以下思路完成畫圖,并保留畫圖痕跡:
第一步:(計算)嘗試滿足,使其中,都為正整數(shù).你取的正整數(shù)_____,_____;
第二步:(畫長為的線段)以第一步中你所取的正整數(shù),為兩條直角邊長畫,使為原點,點落在數(shù)軸的正半軸上,,則斜邊的長即為.
請在下面的數(shù)軸上畫圖:(第二步不要求尺規(guī)作圖,不要求寫畫法)
第三步:(畫表示的點)在下面的數(shù)軸上畫出表示的點,并描述第三步的畫圖步驟:__________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知l1∥l2,射線MN分別和直線l1,l2交于A、B,射線ME分別和直線l1,l2交于C、D,點P在A、B間運動(P與A、B兩點不重合),設∠PDB=α,∠PCA=β,∠CPD=γ.
(1)試探索α,β,γ之間有何數(shù)量關系?說明理由.
(2)如果BD=3,AB=9,AC=6,并且AC垂直于MN,那么點P運動到什么位置時,△ACP≌△BPD說明理由.
(3)在(2)的條件下,當△ACP≌△BPD時,PC與PD之間有何位置關系,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)y1=的圖象與函數(shù)y2=kx+b的圖象交于點A(﹣1,a)B(﹣8+a,1)
(1)求函數(shù)y=和y=kx+b的表達式;
(2)觀察圖象,直接寫出不等式<kx+b的解.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點D是等邊△ABC(即三條邊都相等,三個角都相等的三角形)邊BA上任意一點(點D與點B不重合),連接DC.
(1)如圖1,以DC為邊在BC上方作等邊△DCF,連接AF,猜想線段AF與BD的數(shù)量關系?請說明理由.
(2)如圖2,若以DC為邊在BC上方、下方分別作等邊△DCF和等邊△DCF′,連接AF、BF′,探究AF、BF′與AB有何數(shù)量關系?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點P的坐標為(0,4),直線y=x-3與x軸、y軸分別交于點A、B,點M是直線AB上的一個動點,則PM的最小值為________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將長方形ABCD沿對角線BD折疊,點C落在點E處,BE交AD于點F,已知∠BDC=62°,則∠DFE的度數(shù)為( )
A. 62°B. 56°C. 31°D. 28°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y1=ax2+2x+c與直線y2=kx+b交于點A(-1,0)、B(2,3).
(1)求a、b、c的值;
(2)直接寫出當y1<y2時,自變量的范圍是__________________________.
(3)若點C是拋物線的頂點,求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com