【題目】我市民營經(jīng)濟(jì)持續(xù)發(fā)展,2015年城鎮(zhèn)民營企業(yè)就業(yè)人數(shù)突破20萬.為了解城鎮(zhèn)民營企業(yè)員工每月的收入狀況,統(tǒng)計(jì)局對全市城鎮(zhèn)民營企業(yè)員工2015年月平均收入隨機(jī)抽樣調(diào)查,將抽樣的數(shù)據(jù)按“2000元以內(nèi)”、“2000元~4000元”、“4000元~6000元”和“6000元以上”分為四組,進(jìn)行整理,分別用A,B,C,D表示,得到下列兩幅不完整的統(tǒng)計(jì)圖.

由圖中所給出的信息解答下列問題:
(1)本次抽樣調(diào)查的員工有人,在扇形統(tǒng)計(jì)圖中x的值為 , 表示“月平均收入在2000元以內(nèi)”的部分所對應(yīng)扇形的圓心角的度數(shù)是;
(2)將不完整的條形圖補(bǔ)充完整,并估計(jì)我市2015年城鎮(zhèn)民營企業(yè)20萬員工中,每月的收入在“2000元~4000元”的約多少人?
(3)統(tǒng)計(jì)局根據(jù)抽樣數(shù)據(jù)計(jì)算得到,2016年我市城鎮(zhèn)民營企業(yè)員工月平均收入為4872元,請你結(jié)合上述統(tǒng)計(jì)的數(shù)據(jù),談一談?dòng)闷骄鶖?shù)反映月收入情況是否合理?

【答案】
(1)500;14;21.6°
(2)

解:C的人數(shù)為:500×20%=100(人),補(bǔ)全統(tǒng)計(jì)圖如圖所示:

“2000元~4000元”的約為:20×60%=12(萬人).


(3)

解:∵2000元~4000元的最多,占60%,

∴用月平均收入為4872元反映月收入情況不合理.


【解析】解:(1)本次抽樣調(diào)查的員工人數(shù)是: =500(人),
D所占的百分比是: ×100%=14%,
則在扇形統(tǒng)計(jì)圖中x的值為14;
“月平均收入在2000元以內(nèi)”的部分所對應(yīng)扇形的圓心角的度數(shù)是360°× =21.6°;
所以答案是:500,14,21.6°.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解扇形統(tǒng)計(jì)圖的相關(guān)知識,掌握能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目以及事物的變化情況,以及對條形統(tǒng)計(jì)圖的理解,了解能清楚地表示出每個(gè)項(xiàng)目的具體數(shù)目,但是不能清楚地表示出各個(gè)部分在總體中所占的百分比以及事物的變化情況.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)莊計(jì)劃在30畝空地上全部種植蔬菜和水果,菜農(nóng)小張和果農(nóng)小李分別承包了種植蔬菜和水果的任務(wù).小張種植每畝蔬菜的工資y(元)與種植面積m(畝)之間的函數(shù)如圖①所示,小李種植水果所得報(bào)酬z(元)與種植面積n(畝)之間函數(shù)關(guān)系如圖②所示.

(1)如果種植蔬菜20畝,則小張種植每畝蔬菜的工資是元,小張應(yīng)得的工資總額是元,此時(shí),小李種植水果畝,小李應(yīng)得的報(bào)酬是元;
(2)當(dāng)10<n≤30時(shí),求z與n之間的函數(shù)關(guān)系式;
(3)設(shè)農(nóng)莊支付給小張和小李的總費(fèi)用為w(元),當(dāng)10<m≤30時(shí),求w與m之間的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=5,AC=9,SABC= ,動(dòng)點(diǎn)P從A點(diǎn)出發(fā),沿射線AB方向以每秒5個(gè)單位的速度運(yùn)動(dòng),動(dòng)點(diǎn)Q從C點(diǎn)出發(fā),以相同的速度在線段AC上由C向A運(yùn)動(dòng),當(dāng)Q點(diǎn)運(yùn)動(dòng)到A點(diǎn)時(shí),P、Q兩點(diǎn)同時(shí)停止運(yùn)動(dòng),以PQ為邊作正方形PQEF(P、Q、E、F按逆時(shí)針排序),以CQ為邊在AC上方作正方形QCGH.

(1)求tanA的值;
(2)設(shè)點(diǎn)P運(yùn)動(dòng)時(shí)間為t,正方形PQEF的面積為S,請?zhí)骄縎是否存在最小值?若存在,求出這個(gè)最小值,若不存在,請說明理由;
(3)當(dāng)t為何值時(shí),正方形PQEF的某個(gè)頂點(diǎn)(Q點(diǎn)除外)落在正方形QCGH的邊上,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,以點(diǎn)A為圓心,AB的長為半徑的圓恰好與CD相切于點(diǎn)C,交AD于點(diǎn)E,延長BA與⊙A相交于點(diǎn)F.若 的長為 ,則圖中陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】神仙居景區(qū)門票價(jià)格80元/人,景區(qū)為吸引游客,對門票價(jià)格進(jìn)行動(dòng)態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包 括10人)不打折,10人以上超過10人的部分打b折,設(shè)游客為x人,門票費(fèi)用為y元,非節(jié)假日門票費(fèi)用y1(元)及節(jié)假日門票費(fèi)用y2(元)與游客x(人)之間的函數(shù)關(guān)系如圖所示.

(1)a= , b=;
(2)直接寫出y1、y2與x之間的函數(shù)關(guān)系式;
(3)導(dǎo)游小王6月10日(非節(jié)假日)帶A旅游團(tuán),6月20日(端午節(jié))帶B旅游團(tuán)到神仙居景區(qū)旅游,兩團(tuán)共計(jì)50人,兩次共付門票費(fèi)用3040元,求A、B兩個(gè)旅游團(tuán)各多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:如果一個(gè) 的函數(shù)圖像經(jīng)過平移后能與某反比例函數(shù)的圖像重合,那么稱這個(gè)函數(shù)是 的“反比例平移函數(shù)”.
例如: 的圖像向左平移2個(gè)單位,再向下平移1個(gè)單位得到 的圖像,則 的“反比例平移函數(shù)”.
(1)若矩形的兩邊分別是2cm、3cm,當(dāng)這兩邊分別增加 cm、 cm后,得到的新矩形的面積為8 ,求 的函數(shù)表達(dá)式,并判斷這個(gè)函數(shù)是否為“反比例平移函數(shù)”.
(2)如圖,在平面直角坐標(biāo)系中,點(diǎn)O為原點(diǎn),矩形OABC的頂點(diǎn)A、C的坐標(biāo)分別為(9,0)、(0,3) .點(diǎn)D是OA的中點(diǎn),連接OB、CD交于點(diǎn)E,“反比例平移函數(shù)” 的圖像經(jīng)過B、E兩點(diǎn).則這個(gè)“反比例平移函數(shù)”的表達(dá)式為;這個(gè)“反比例平移函數(shù)”的圖像經(jīng)過適當(dāng)?shù)淖儞Q與某一個(gè)反比例函數(shù)的圖像重合,請寫出這個(gè)反比例函數(shù)的表達(dá)式

(3)在(2)的條件下, 已知過線段BE中點(diǎn)的一條直線 交這個(gè)“反比例平移函數(shù)”圖像于P、Q兩點(diǎn)(P在Q的右側(cè)),若B、E、P、Q為頂點(diǎn)組成的四邊形面積為16,請求出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,點(diǎn)A、B的坐標(biāo)分別為(0,3)、(7,0),點(diǎn)C在第一象限,AC∥x軸,∠OBC=45°.

(1)求點(diǎn)C的坐標(biāo);
(2)點(diǎn)D在線段AC上,CD=1,點(diǎn)E的坐標(biāo)為(n,0),在直線DE的右側(cè)作∠DEG=45°,直線EG與直線BC相交于點(diǎn)F,設(shè)BF=m,當(dāng)n<7且n≠0時(shí),求m關(guān)于n的函數(shù)解析式,并直接寫出n的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖從一個(gè)建筑物的A處測得對面樓BC的頂部B的仰角為37°,底部C的俯角為45°,觀察點(diǎn)與樓的水平距離AD為40m,求樓BC的高度(參考數(shù)據(jù):sin37°≈0.60;cos37°≈0.80;tan37°≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,△ABC內(nèi)接于⊙O,∠BAC的平分線交⊙O于點(diǎn)D,交BC于點(diǎn)E(BE>EC),且BD=2.過點(diǎn)D作DF∥BC,交AB的延長線于點(diǎn)F.

(1)求證:DF為⊙O的切線;
(2)若∠BAC=60°,DE=,求圖中陰影部分的面積;
(3)若=,DF+BF=8,如圖2,求BF的長.

查看答案和解析>>

同步練習(xí)冊答案