【題目】如圖從一個建筑物的A處測得對面樓BC的頂部B的仰角為37°,底部C的俯角為45°,觀察點與樓的水平距離AD為40m,求樓BC的高度(參考數(shù)據(jù):sin37°≈0.60;cos37°≈0.80;tan37°≈0.75)

【答案】解:在Rt△ABD中,
∵AD=31,∠BAD=32°,
∴BD=ADtan37°≈40×0.6=24,
在Rt△ACD中,
∵∠DAC=45°,
∴CD=AD=40,
∴BC=BD+CD=24+40≈64.
故樓BC的高度大約為64m.
【解析】在Rt△ABD中,根據(jù)正切函數(shù)求得BD=ADtan∠BAD,在Rt△ACD中,求得CD=AD,再根據(jù)BC=BD+CD,代入數(shù)據(jù)計算即可.
【考點精析】解答此題的關(guān)鍵在于理解關(guān)于仰角俯角問題的相關(guān)知識,掌握仰角:視線在水平線上方的角;俯角:視線在水平線下方的角.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖1中的摩天輪可抽象成一個圓,圓上一點離地面的高度y(m)與旋轉(zhuǎn)時間x(min)之間的關(guān)系如圖2所示.
(1)根據(jù)圖2填表:

x(min)

0

3

6

8

12

y(m)


(2)變量y是x的函數(shù)嗎?為什么?
(3)根據(jù)圖中的信息,請寫出摩天輪的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市民營經(jīng)濟持續(xù)發(fā)展,2015年城鎮(zhèn)民營企業(yè)就業(yè)人數(shù)突破20萬.為了解城鎮(zhèn)民營企業(yè)員工每月的收入狀況,統(tǒng)計局對全市城鎮(zhèn)民營企業(yè)員工2015年月平均收入隨機抽樣調(diào)查,將抽樣的數(shù)據(jù)按“2000元以內(nèi)”、“2000元~4000元”、“4000元~6000元”和“6000元以上”分為四組,進行整理,分別用A,B,C,D表示,得到下列兩幅不完整的統(tǒng)計圖.

由圖中所給出的信息解答下列問題:
(1)本次抽樣調(diào)查的員工有人,在扇形統(tǒng)計圖中x的值為 , 表示“月平均收入在2000元以內(nèi)”的部分所對應(yīng)扇形的圓心角的度數(shù)是;
(2)將不完整的條形圖補充完整,并估計我市2015年城鎮(zhèn)民營企業(yè)20萬員工中,每月的收入在“2000元~4000元”的約多少人?
(3)統(tǒng)計局根據(jù)抽樣數(shù)據(jù)計算得到,2016年我市城鎮(zhèn)民營企業(yè)員工月平均收入為4872元,請你結(jié)合上述統(tǒng)計的數(shù)據(jù),談一談用平均數(shù)反映月收入情況是否合理?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)開展“綠化家鄉(xiāng)、植樹造林”活動,為了解全校植樹情況,對該校甲、乙、丙、丁四個班級植樹情況進行了調(diào)查,將收集的數(shù)據(jù)整理并繪制成圖1和圖2兩幅尚不完整的統(tǒng)計圖,請根據(jù)圖中的信息,完成下列問題:
(1)這四個班共植樹棵;
(2)補全兩幅統(tǒng)計圖;
(3)求圖1中“甲”班級所對應(yīng)的扇形圓心角的度數(shù);
(4)若四個班級所種植的樹成活了190棵,全校共植樹2000棵,請你估計全校種植的樹中成活的樹有多少棵.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人進行慢跑練習(xí),慢跑路程y(米)與所用時間t(分鐘)之間的關(guān)系如圖所示,下列說法錯誤的是( )甲、乙兩人進行慢跑練習(xí),慢跑路程y(米)與所用時間t(分鐘)之間的關(guān)系如圖所示,下列說法錯誤的是(
A.前2分鐘,乙的平均速度比甲快
B.甲、乙兩人8分鐘各跑了800米
C.5分鐘時兩人都跑了500米
D.甲跑完800米的平均速度為100米/分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,菱形ABOC的頂點O在坐標(biāo)原點,邊BO在x軸的負半軸上,頂點C的坐標(biāo)為(﹣ ,3),反比例函數(shù)y= 的圖象與菱形對角線AO交于D點,連接BD,當(dāng)BD⊥x軸時,k的值是(
A.4
B.﹣4
C.2
D.﹣2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC和△BCD中,AB=DC,AC=DB,AC、DB交于點M.
(1)求證:△ABC≌△DCB;
(2)作CN∥BD,BN∥AC,CN交BN于點N,求證:四邊形BNCM是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某足球運動員站在點O處練習(xí)射門,將足球從離地面0.5m的A處正對球門踢出(點A在y軸上),足球的飛行高度y(單位:m)與飛行時間t(單位:s)之間滿足函數(shù)關(guān)系y=at2+5t+c,已知足球飛行0.8s時,離地面的高度為3.5m.

(1)足球飛行的時間是多少時,足球離地面最高?最大高度是多少?
(2)若足球飛行的水平距離x(單位:m)與飛行時間t(單位:s)之間具有函數(shù)關(guān)系x=10t,已知球門的高度為2.44m,如果該運動員正對球門射門時,離球門的水平距離為28m,他能否將球直接射入球門?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,AB=6,過點O作OH⊥AB交圓于點H,點C是弧AH上異于A、B的動點,過點C作CD⊥OA,CE⊥OH,垂足分別為D、E,過點C的直線交OA的延長線于點G,且∠GCD=∠CED.

(1)求證:GC是⊙O的切線;
(2)求DE的長;
(3)過點C作CF⊥DE于點F,若∠CED=30°,求CF的長.

查看答案和解析>>

同步練習(xí)冊答案