【題目】如圖,在正方形ABCD中,對(duì)角線AC,BD交于點(diǎn)0,過(guò)點(diǎn)0的直線分別交邊AD,BC于點(diǎn)E,F(xiàn),EF=6.則AE2+BF2的值為( )
A. 9 B. 16 C. 18 D. 36
【答案】C
【解析】過(guò)點(diǎn)A作AM∥EF交BC于點(diǎn)M,易證四邊形AEFM是平行四邊形,可得出AM=EF,AE=MF,再通過(guò)證三角形全等,得出AE=CF,可得出BA2=BF2+2BFAE+AE2(1),再在Rt△ABM中,利用勾股定理得出MA2=AB2+BF2-2BFAE+AE2(2),然后由(1)+(2),可求出結(jié)果.
過(guò)點(diǎn)A作AM∥EF交BC于點(diǎn)M
∵正方形ABCD
∴AD∥BC,OA=OC
∠EAO=∠FCO
在△AOE和△COF中
∴△AOE≌△COF(ASA)
∴AE=CF
∴BC=BF+FC
BA2=BC2=(BF+AE)2,
即BA2=BF2+2BFAE+AE2(1)
∵AD∥BC,AM∥EF
∴四邊形AEFM是平行四邊形
∴AE=MF,AM=EF=6
∴BM=BF-MF=BF-AE
在Rt△ABM中
MA2=AB2+(BF-AE)2=AB2+BF2-2BFAE+AE2(2)
由(1)+(2)得
BA2+EF2=BF2+2BFAE+AE2+AB2+BF2-2BFAE+AE2
36=2BF2+2AE2
∴AE2+BF2=18
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】汽車超速行駛是交通安全的重大隱患,為了有效降低交通事故的發(fā)生,許多道路在事故易發(fā)路段設(shè)置了區(qū)間測(cè)速如圖,學(xué)校附近有一條筆直的公路l,其間設(shè)有區(qū)間測(cè)速,所有車輛限速40千米/小時(shí)數(shù)學(xué)實(shí)踐活動(dòng)小組設(shè)計(jì)了如下活動(dòng):在l上確定A,B兩點(diǎn),并在AB路段進(jìn)行區(qū)間測(cè)速.在l外取一點(diǎn)P,作PC⊥l,垂足為點(diǎn)C.測(cè)得PC=30米,∠APC=71°,∠BPC=35°.上午9時(shí)測(cè)得一汽車從點(diǎn)A到點(diǎn)B用時(shí)6秒,請(qǐng)你用所學(xué)的數(shù)學(xué)知識(shí)說(shuō)明該車是否超速.(參考數(shù)據(jù):sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin71°≈0.95,cos71°≈0.33,tan71°≈2.90)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨州市新水一橋(如圖1)設(shè)計(jì)靈感來(lái)源于市花﹣﹣蘭花,采用蝴蝶蘭斜拉橋方案,設(shè)計(jì)長(zhǎng)度為258米,寬32米,為雙向六車道,2018年4月3日通車.斜拉橋又稱斜張橋,主要由索塔、主梁、斜拉索組成.某座斜拉橋的部分截面圖如圖2所示,索塔AB和斜拉索(圖中只畫(huà)出最短的斜拉索DE和最長(zhǎng)的斜拉索AC)均在同一水平面內(nèi),BC在水平橋面上.已知∠ABC=∠DEB=45°,∠ACB=30°,BE=6米,AB=5BD.
(1)求最短的斜拉索DE的長(zhǎng);
(2)求最長(zhǎng)的斜拉索AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,如圖,在△ABC中,OB和OC分別平分∠ABC和∠ACB,過(guò)O作DE∥BC,分別交AB、AC于點(diǎn)D、E,若DE=8,則線段BD+CE的長(zhǎng)為
A. 5B. 6C. 7D. 8
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,將二次函數(shù)y=x2+2x+1的圖象沿x軸翻折,然后向右平移1個(gè)單位,再向上平移4個(gè)單位,得到二次函數(shù)y=ax2+bx+c的圖象.函數(shù)y=x2+2x+1的圖象的頂點(diǎn)為點(diǎn)A.函數(shù)y=ax2+bx+c的圖象的頂點(diǎn)為點(diǎn)B,和x軸的交點(diǎn)為點(diǎn)C,D(點(diǎn)D位于點(diǎn)C的左側(cè)).
(1)求函數(shù)y=ax2+bx+c的解析式;
(2)從點(diǎn)A,C,D三個(gè)點(diǎn)中任取兩個(gè)點(diǎn)和點(diǎn)B構(gòu)造三角形,求構(gòu)造的三角形是等腰三角形的概率;
(3)若點(diǎn)M是線段BC上的動(dòng)點(diǎn),點(diǎn)N是△ABC三邊上的動(dòng)點(diǎn),是否存在以AM為斜邊的Rt△AMN,使△AMN的面積為△ABC面積的?若存在,求tan∠MAN的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知△ABC中,AB=6cm,∠B=∠C,BC=4cm,點(diǎn)D為AB的中點(diǎn).若點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過(guò)1秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
(2)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等,當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各數(shù)填入相應(yīng)的大括號(hào)內(nèi).
3,-,,0.5,2π,3.14159265,-,1.103030030003…(相
鄰兩個(gè)3之間依次多1個(gè)0).
(1) 有理數(shù)集合:{ };
(2) 無(wú)理數(shù)集合:{ };
(3) 實(shí)數(shù)集合:{ };
(4) 負(fù)實(shí)數(shù)集合:{ }.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一扇窗戶如圖1所示,窗框和窗扇用“滑塊鉸鏈”連接.如圖2是圖1中“滑塊鉸鏈”的平面示意圖,滑軌MN安裝在窗框上,托懸臂DE安裝在窗扇上,支點(diǎn)4處裝有滑塊,滑塊可以左右滑動(dòng),支點(diǎn)B,C,D在一條直線上,延長(zhǎng)DE交MN于點(diǎn)F.已知AC=DE=20cm,AE=CD=10cm,BD=40cm.
(1)當(dāng)∠CAB=35 時(shí),求窗扇與窗框的夾角∠DFB的度數(shù).
(2)當(dāng)窗扇關(guān)閉時(shí),圖中點(diǎn)E,A,D,C,B都在滑軌MN上.求此時(shí)點(diǎn)A與點(diǎn)B之間的距離.
(3)在(2)的前提下,將窗戶推開(kāi)至四邊形ACDE為矩形時(shí),求點(diǎn)A處的滑塊移動(dòng)的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表是今年雨季某河流一周的水位變化情況(上周末的水位達(dá)到警戒水位)
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
水位記錄 |
注:此河流的警戒水位為米.
完成下面的本周水位變化記錄表:
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
水位變化(與前一天比較) |
(注:規(guī)定水位比前一天上升用“”,水位比前一天下降用“”,不升不降記作“”.)
與上周末相比,本周末河流水位是上升了還是下降了? (填“上升”或“下降”)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com