【題目】已知平行四邊形ABCD的頂點A在第三象限,對角線AC的中點在坐標原點,一邊AB與x軸平行且AB=2,若點A的坐標為(a,b),則點D的坐標為

【答案】(﹣2﹣a,﹣b)或(2﹣a,﹣b)
【解析】解:如圖1,

∵四邊形ABCD是平行四邊形,
∴CD=AB=2,
∵A的坐標為(a,b),AB與x軸平行,
∴B(2+a,b),∵點D與點B關于原點對稱,
∴D(﹣2﹣a,﹣b)
如圖2,

∵B(a﹣2,b),∵點D與點B關于原點對稱,
∴D(2﹣a,﹣b),
綜上所述:D(﹣2﹣a,﹣b)或(2﹣a,﹣b).
【考點精析】利用平行四邊形的性質(zhì)對題目進行判斷即可得到答案,需要熟知平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直角△ABC的三個頂點分別是A(﹣3,1),B(0,3),C(0,1)

(1)將△ABC以點C為旋轉(zhuǎn)中心旋轉(zhuǎn)180°,畫出旋轉(zhuǎn)后對應的△A1B1C1;
(2)分別連結AB1、BA1后,求四邊形AB1A1B的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列運算正確的是( 。
A.a2+a3=a5
B.(﹣2a23÷( 2=﹣16a4
C.3a1=
D.(2 a2 a)2÷3a2=4a2﹣4a+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列各式中:

3x=﹣4系數(shù)化為1x=﹣

52x移項得x52;

去分母得22x1)=1+3x3);

22x1)﹣3x3)=1去括號得4x23x91

其中正確的個數(shù)有( 。

A. 0 B. 1 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,在△ABC中,AB=ACADBC,垂足為點D,AN是△ABC外角∠CAM的平分線,CEAN,垂足為點E,

(1)求證:四邊形ADCE為矩形;

(2)當△ABC滿足什么條件時,四邊形ADCE是一個正方形?并給出證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學名著,作者是我國明代數(shù)學家程大位.在《算法統(tǒng)宗》中記載:以繩測井,若將繩三折測之,繩多4尺,若將繩四折測之,繩多1尺,繩長井深各幾何?

譯文:用繩子測水井深度,如果將繩子折成三等份,井外余繩4尺;如果將繩子折成四等份,井外余繩1尺.問繩長、井深各是多少尺?

設井深為x尺,根據(jù)題意列方程,正確的是(  )

A. 3(x+4)=4(x+1) B. 3x+4=4x+1

C. 3(x﹣4)=4(x﹣1) D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB∥CD,直線EF分別交AB,CD于點E,F(xiàn),∠BEF的平分線與∠DFE的平分線相交于點P,試說明△EPF為直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】模型與應用.

(模型)

(1)如圖①已知ABCD,求證∠1+MEN2=360°.

(應用)

(2)如圖②,已知ABCD,則∠1+2+3+4+5+6的度數(shù)為

如圖③,已知ABCD,則∠1+2+3+4+5+6+…+n的度數(shù)為

(3)如圖④,已知ABCD,AM1M2的角平分線M1 O與∠CMnMn1的角平分線MnO交于點O,若∠M1OMnm°.

在(2)的基礎上,求∠2+3+4+5+6+……+n-1的度數(shù).(用含m、n的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與x軸交于點A,與反比例函數(shù)y= (x>0)的圖象交于點B(2,n),過點B作BC⊥x軸于點C,點P(3n﹣4,1)是該反比例函數(shù)圖象上的一點,且∠PBC=∠ABC,求反比例函數(shù)和一次函數(shù)的表達式.

查看答案和解析>>

同步練習冊答案