【題目】如圖,矩形ABCD中,AB=1,AD=2,點E是邊AD上的一個動點,把△BAE沿BE折疊,點A落在A′處,如果A′恰在矩形的對稱軸上,則AE的長為 .
【答案】1或
【解析】解:分兩種情況: ①如圖1,過A′作MN∥CD交AD于M,交BC于N,
則直線MN是矩形ABCD 的對稱軸,
∴AM=BN= AD=1,
∵△ABE沿BE折疊得到△A′BE,
∴A′E=AE,A′B=AB=1,
∴A′N= =0,即A′與N重合,
∴A′M=1,
∴A′E2=EM2+A′M2 ,
∴A′E2=(1﹣A′E)2+12 ,
解得:A′E=1,
∴AE=1;
②如圖2,過A′作PQ∥AD交AB于P,交CD于Q,
則直線PQ是矩形ABCD 的對稱軸,
∴PQ⊥AB,AP=PB,AD∥PQ∥BC,
∴A′B=2PB,
∴∠PA′B=30°,
∴∠A′BC=30°,
∴∠EBA′=30°,∴AE=A′E=A′B×tan30°=1× = ;
綜上所述:AE的長為1或 ;
故答案為:1或 .
分兩種情況:①過A′作MN∥CD交AD于M,交BC于N,則直線MN是矩形ABCD 的對稱軸,得出AM=BN= AD=1,由勾股定理得到A′N=0,求得A′M=1,再由勾股定理解得A′E即可;
②過A′作PQ∥AD交AB于P,交CD于Q;求出∠EBA′=30°,由三角函數(shù)求出AE=A′E=A′B×tan30°;即可得出結(jié)果.
科目:初中數(shù)學 來源: 題型:
【題目】已知:AB是⊙O的弦,點C是 的中點,連接OB、OC,OC交AB于點D.
(1)如圖1,求證:AD=BD;
(2)如圖2,過點B作⊙O的切線交OC的延長線于點M,點P是 上一點,連接AP、BP,求證:∠APB﹣∠OMB=90°;
(3)如圖3,在(2)的條件下,連接DP、MP,延長MP交⊙O于點Q,若MQ=6DP,sin∠ABO= ,求 的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在一次數(shù)學活動課上小芳,在Rt△ABC中,∠C=90°,以頂點A為圓心,適當長為半徑畫弧,分別交AC,AB于點M,N,再分別以點M,N為圓心,大于 MN的長為半徑畫弧,兩弧交于點P,作射線AP交邊BC于點D,若CD=8,AB=30,請你幫助她算一下△ABD的面積是( )
A.150
B.130
C.240
D.120
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在坡角為30°的山坡上有一鐵塔AB,其正前方矗立著一大型廣告牌,當陽光與水平線成45°角時,測得鐵塔AB落在斜坡上的影子BD的長為6米,落在廣告牌上的影子CD的長為4米,求鐵塔AB的高(AB,CD均與水平面垂直,結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某微店銷售甲、乙兩種商品,賣出6件甲商品和4件乙商品可獲利120元;賣出10件甲商品和6件乙商品可獲利190元.
(1)甲、乙兩種商品每件可獲利多少元?
(2)若該微店甲、乙兩種商品預計再次進貨200件,全部賣完后總獲利不低于2300元,已知甲商品的數(shù)量不少于120件.請你幫忙設計一個進貨方案,使總
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知在Rt△ABC中,∠ABC=90°,點D是BC邊的中點,分別以B、C為圓心,大于線段BC長度一半的長為半徑畫弧,兩弧在直線BC上方的交點為P,直線PD交AC于點E,連接BE,則下列結(jié)論:①ED⊥BC;②∠A=∠EBA;③EB平分∠AED;④ED= AB中,一定正確的是( )
A.①②③
B.①②④
C.①③④
D.②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,某飛機于空中探測某座山的高度,在點A處飛機的飛行高度是AF=3800米,從飛機上觀測山頂目標C的俯角是45°,飛機繼續(xù)以相同的高度飛行300米到B處,此時觀測目標C的俯角是50°,求這座山的高度CD.
(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.“蒙上眼睛射擊正中靶心”是必然事件
B.“拋一枚硬幣,正面朝上的概率為 ”說明擲一枚質(zhì)地均勻的硬幣10次,必有5次正面朝上
C.“拋一枚均勻的正方體骰子,朝上的點數(shù)是3的概率為 ”表示隨著拋擲次數(shù)的增加,“拋出朝上的點數(shù)是3”這一事件發(fā)生的頻率穩(wěn)定在 附近
D.為了解某種節(jié)能燈的使用壽命,應選擇全面調(diào)查
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com