【題目】如圖,AB是⊙O的直徑,AC是⊙O的弦,過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,若∠A=∠D,CD=3,則圖中陰影部分的面積為 .
【答案】
【解析】解:連接OC,
∵過(guò)點(diǎn)C的切線交AB的延長(zhǎng)線于點(diǎn)D,
∴OC⊥CD,
∴∠OCD=90°,
即∠D+∠COD=90°,
∵AO=CO,
∴∠A=∠ACO,
∴∠COD=2∠A,
∵∠A=∠D,
∴∠COD=2∠D,
∴3∠D=90°,
∴∠D=30°,
∴∠COD=60°
∵CD=3,
∴OC=3× = ,∴陰影部分的面積= ×3× ﹣ = ,故答案為: .
連接OC,可求得△OCD和扇形OCB的面積,進(jìn)而可求出圖中陰影部分的面積.本題主要考查切線的性質(zhì)及扇形面積的計(jì)算,掌握過(guò)切點(diǎn)的半徑與切線垂直是解題的關(guān)鍵.求出∠D=30°是解題的突破口.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某食品廠從生產(chǎn)的袋裝食品中抽出樣品 20 袋,檢測(cè)每袋的質(zhì)量是否符合標(biāo)準(zhǔn),超過(guò)或不足的部分分別用正、負(fù)數(shù)來(lái)表示,記錄如下表:
①這批樣品的平均質(zhì)量比標(biāo)準(zhǔn)質(zhì)量多還是少?用你學(xué)過(guò)的方法合理解釋;
②若標(biāo)準(zhǔn)質(zhì)量為 450 克,則抽樣檢測(cè)的總質(zhì)量是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,已知A、O、B三點(diǎn)在同一直線上,射線OD、OE分別平分∠AOC、∠BOC
(1)求∠DOE的度數(shù);
(2)如圖2,在∠AOD內(nèi)引一條射線OF,使∠COF=,其他不變,設(shè)∠DOF= )
①求∠AOF的度數(shù)(用含的代數(shù)式表示).
②若∠BOD是∠AOF的2倍,求∠DOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,點(diǎn)D,E分別在AB,AC上,CE=BC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針?lè)较蛐D(zhuǎn)90°后得CF,連接EF.
(1)補(bǔ)充完成圖形;
(2)若EF∥CD,求證:∠BDC=90°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等邊△ABC中:
(1)如圖1,P,Q是BC邊上的兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);
(2)點(diǎn)P,Q是BC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對(duì)稱點(diǎn)為M,連接AM,PM.
①依題意將圖2補(bǔ)全;
②小茹通過(guò)觀察、實(shí)驗(yàn)提出猜想:在點(diǎn)P,Q運(yùn)動(dòng)的過(guò)程中,始終有PA=PM,小茹把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過(guò)討論,形成了證明該猜想的幾種想法:
想法1:要證明PA=PM,只需證△APM是等邊三角形;
想法2:在BA上取一點(diǎn)N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;
想法3:將線段BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…
請(qǐng)你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P是四邊形ABCD外接圓上任意一點(diǎn),且不與四邊形頂點(diǎn)重合,若AD是⊙O的直徑,AB=BC=CD.連接PA,PB,PC,若PA=a,則點(diǎn)A到PB和PC的距離之和AE+AF= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校為了了解學(xué)生大課間活動(dòng)的跳繩情況,隨機(jī)抽取了50名學(xué)生每分鐘跳繩的次數(shù)進(jìn)行統(tǒng)計(jì),把統(tǒng)計(jì)結(jié)果繪制成如表和直方圖.
次數(shù) | 70≤x<90 | 90≤x<110 | 110≤x<130 | 130≤x<150 | 150≤x<170 |
人數(shù) | 8 | 23 | 16 | 2 | 1 |
根據(jù)所給信息,回答下列問(wèn)題:
(1)本次調(diào)查的樣本容量是;
(2)本次調(diào)查中每分鐘跳繩次數(shù)達(dá)到110次以上(含110次)的共有的共有人;
(3)根據(jù)上表的數(shù)據(jù)補(bǔ)全直方圖;
(4)如果跳繩次數(shù)達(dá)到130次以上的3人中有2名女生和一名男生,學(xué)校從這3人中抽取2名學(xué)生進(jìn)行經(jīng)驗(yàn)交流,求恰好抽中一男一女的概率(要求用列表法或樹(shù)狀圖寫(xiě)出分析過(guò)程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】計(jì)算下列各題
(1)計(jì)算:(﹣1)2014﹣|﹣ |+ ﹣( ﹣π)0;
(2)先化簡(jiǎn),再求值:(2x﹣1)2﹣2(3﹣2x),其中x=﹣2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,∠ABC=∠ACB,AD、BD、CD分別平分△ABC的外角∠EAC、內(nèi)角∠ABC、外角∠ACF.以下結(jié)論:①AD∥BC;②∠ACB=2∠ADB;③;④BD平分∠ADC;⑤∠BDC=∠BAC.其中正確的結(jié)論有_______個(gè).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com