【題目】如圖1,等邊△ABC的邊長(zhǎng)為4cm,動(dòng)點(diǎn)D從點(diǎn)B出發(fā),沿射線BC方向移動(dòng),以AD為邊作等邊△ADE.
(1)在點(diǎn)D運(yùn)動(dòng)的過(guò)程中,點(diǎn)E能否移動(dòng)至直線AB上?若能,求出此時(shí)BD的長(zhǎng);若不能,請(qǐng)說(shuō)明理由;
(2)如圖2,在點(diǎn)D從點(diǎn)B開(kāi)始移動(dòng)至點(diǎn)C的過(guò)程中,以等邊△ADE的邊AD、DE為邊作ADEF.
①ADEF的面積是否存在最小值?若存在,求出這個(gè)最小值;若不存在,請(qǐng)說(shuō)明理由;
②若點(diǎn)M、N、P分別為AE、AD、DE上動(dòng)點(diǎn),直接寫(xiě)出MN+MP的最小值.
【答案】(1)不存在;(2)①存在,6;②3.
【解析】試題分析:(1)根據(jù)等邊三角形的性質(zhì)可知: 由三角形外角的性質(zhì)可知從而可知: 所以點(diǎn)E不能移動(dòng)到直線AB上.
(2)因?yàn)椤?/span>ADE的面積所以當(dāng)AD最短時(shí),△ADE的面積有最小,根據(jù)垂線段最短可知當(dāng)AD⊥BC時(shí),△ADE的面積最小.四邊形為平四邊形,AE為對(duì)角線,所以平行四邊形的面積是△ADE面積的2倍,所以△ADE的面積最小時(shí),平行四邊形的面積最小;
(3)當(dāng)點(diǎn)N、M、P在一條直線上,且NP⊥AD時(shí),MN+MP有最小值,最小值為AD與EF之間的距離.
試題解析:(1)不存在.
理由:如圖1所示:
∵△ABC和△ADE均為等邊三角形,
∴
∵
∴
又∵
∴
∴點(diǎn)E不能移動(dòng)到直線AB上.
(2)①存在:在圖(2)中,當(dāng)AD⊥BC時(shí),△ADE的面積最小.
在Rt△ADB中,
∴△ADE的面積
∵四邊形ADEF為平四邊形,AE為對(duì)角線,
∴平行四邊形ADEF的面積是△ADE面積的2倍.
∴ADEF的面積的最小值
②如圖3所示:作點(diǎn)P關(guān)于AE的對(duì)稱點(diǎn)P1,
當(dāng)點(diǎn)N、M、P在一條直線上,且NP⊥AD時(shí),
過(guò)點(diǎn)A作AG∥NP1,
∵AN∥GP1,AG∥NP1,
∴四邊形ANP1G為平行四邊形.
∴
即MN+MP的最小值為3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在四邊形ABCD中,∠B=90°,AC=4,AB∥CD,DH垂直平分AC,點(diǎn)H為垂足.設(shè)AB=x,AD=y,則y關(guān)于x的函數(shù)關(guān)系用圖象大致可以表示為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年二十國(guó)集團(tuán)領(lǐng)導(dǎo)人峰會(huì)(簡(jiǎn)稱“G20峰會(huì)”)于9月4日至5日在浙江杭州召開(kāi),為保證會(huì)議期間交通暢通,杭州市已發(fā)布9月1日至7日為“G20峰會(huì)”調(diào)休期間.據(jù)報(bào)道對(duì)于杭州市民:浙江省旅游局聯(lián)合11個(gè)市開(kāi)展一系列旅游惠民活動(dòng),活動(dòng)內(nèi)容為:“本省游”、“黃山游”、“黔東南游”,某旅游公司為了解群眾出游情況,擬采用分層抽樣的方法從有意愿“本省游”、“黃山游”、“黔東南游”這三個(gè)區(qū)域旅游的群眾中抽取7人進(jìn)行某項(xiàng)調(diào)查,已知有意愿參加“本省游”、“黃山游”、“黔東南游”的群眾分別有360,540,360人.
(1)求從“本省游”、“黃山游”、“黔東南游”,三個(gè)區(qū)域旅游的群眾分別抽取的人數(shù);
(2)若從抽得的7人中隨機(jī)抽取2人進(jìn)行調(diào)查,用列舉法計(jì)算這2人中至少有1人有意愿參加“本省游”的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知直線l的極坐標(biāo)方程為ρsin(θ+ )= ,圓C的參數(shù)方程為: (其中θ為參數(shù)).
(1)判斷直線l與圓C的位置關(guān)系;
(2)若橢圓的參數(shù)方程為 (φ為參數(shù)),過(guò)圓C的圓心且與直線l垂直的直線l′與橢圓相交于A,B兩點(diǎn),求|AB|.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}中,a1<0,an+1= ,數(shù)列{bn}滿足:bn=nan(n∈N*),設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,當(dāng)n=7時(shí)Sn有最小值,則a1的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù) ,g(x)為定義在R上的奇函數(shù),且當(dāng)x<0時(shí),g(x)=x2﹣2x﹣5,若f(g(a))≤2,則實(shí)數(shù)a的取值范圍是( )
A.
B. ??
C.(﹣∞,﹣1]∪(0,3]
D.[﹣1,3]
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】襄陽(yáng)農(nóng)科所對(duì)冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關(guān)系進(jìn)行分析研究,他們分別記錄了12月1日至12月5日的每天晝夜溫度與實(shí)驗(yàn)室每天每100顆種子中的發(fā)芽數(shù),得到如下數(shù)據(jù):
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
溫差x(℃) | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)y(顆) | 23 | 26 | 32 | 26 | 16 |
襄陽(yáng)農(nóng)科所確定的研究方案是:先從這5組數(shù)據(jù)中選取2組,用剩下的3組數(shù)據(jù)求線性回歸方程,再對(duì)被選取的2組數(shù)據(jù)進(jìn)行檢驗(yàn).
(1)求選取的2組數(shù)據(jù)恰好是不相鄰的2天數(shù)據(jù)的概率;
(2)若選取的是12月1日與12月5日這兩組數(shù)據(jù),情根據(jù)12月2日至12月4日的數(shù)據(jù),求y關(guān)于x的線性回歸方程 = x+ ;
(3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過(guò)1顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(2)中所得的線性回歸方程是否可靠? 注: = = , = ﹣ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線x2=2py(p>0)的焦點(diǎn)為F,直線x=4與x軸的交點(diǎn)為P,與拋物線的交點(diǎn)為Q,且 .
(1)求拋物線的方程;
(2)如圖所示,過(guò)F的直線l與拋物線相交于A,D兩點(diǎn),與圓x2+(y﹣1)2=1相交于B,C兩點(diǎn)(A,B兩點(diǎn)相鄰),過(guò)A,D兩點(diǎn)分別作我校的切線,兩條切線相交于點(diǎn)M,求△ABM與△CDM的面積之積的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=|x﹣2|+|2x+a|,a∈R. (Ⅰ)當(dāng)a=1時(shí),解不等式f(x)≥5;
(Ⅱ)若存在x0滿足f(x0)+|x0﹣2|<3,求a的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com