【題目】如圖,已知直線y=x+4與兩坐標軸分別交于A,B兩點,⊙C的圓心坐標為(2,O),半徑為2,若D是⊙C上的一個動點,線段DA與y軸交于點E,則△ABE面積的最小值和最大值分別是 .
【答案】8﹣2 和8+2
【解析】解:y=x+4,
∵當x=0時,y=4,當y=0時,x=﹣4,
∴OA=4,OB=4,
∵△ABE的邊BE上的高是OA,
∴△ABE的邊BE上的高是4,
∴要使△ABE的面積最大或最小,只要BE取最大值或最小值即可,
過A作⊙C的兩條切線,如圖,
當在D點時,BE最小,即△ABE面積最小;
當在D′點時,BE最大,即△ABE面積最大;
∵x軸⊥y軸,OC為半徑,
∴EE′是⊙C切線,
∵AD′是⊙C切線,
∴OE′=E′D′,
設E′O=E′D′=x,
∵AC=4+2=6,CD′=2,AD′是切線,
∴∠AD′C=90°,由勾股定理得:AD′=4 ,
∴sin∠CAD′= = ,
∴ = ,
解得:x= ,
∴BE′=4+ ,BE=4﹣ ,
∴△ABE的最小值是 ×(4﹣ )×4=8﹣2 ,
最大值是: ×(4+ )×4=8+2 ,
所以答案是:8﹣2 和8+2 .
科目:初中數(shù)學 來源: 題型:
【題目】定義:兩條拋物線頂點都在直線y=x上,且兩條拋物線關于原點成中心對稱,則稱這兩條拋物線為一對“友好拋物線”.
(1)拋物線y=2(x-1)2+1如圖1所示,請畫出它的“友好拋物線”,并直接寫出它的解析式;
(確認無誤后,請用黑色水筆描黑)
(2)一對“友好拋物線”,其中一條拋物線的解析式為y= -(x+h)2-h,這對“友好拋物線”與y軸交點記為A,B,記AB=n(當A與B重合時,記n=0),現(xiàn)我們來探究n與h的關系;
①當h≥0時,如圖2所示,求n與h的函數(shù)關系式;
②當h<0時,求n與h的函數(shù)關系式;
(3)在(2)的條件下,要使 ≤n≤ ,試直接寫出h的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=kx2+ x+ (k是常數(shù)).
(1)若該函數(shù)的圖象與x軸有兩個不同的交點,試求k的取值范圍;
(2)若點(1,k)在某反比例函數(shù)圖象上,要使該反比例函數(shù)和二次函數(shù)y=kx2+ x+ 都是y隨x的增大而增大,求k應滿足的條件及x的取值范圍;
(3)若拋物線y=kx2+ x+ 與x軸交于A(xA , 0)、B(xB , 0)兩點,且xA<xB , xA2+xB2=34,若與y軸不平行的直線y=ax+b經(jīng)過點P(1,3),且與拋物線交于Q1(x1 , y1)、Q2(x2 , y2)兩點,試探究 是否為定值,并寫出探究過程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,方格紙中的每個小方格都是邊長為1的正方形,Rt△ABC的項點均在格點上.A(﹣6,1)B(﹣3,1)C(﹣3,3)
(1)將Rt△ABC沿x軸正方向平移5個單位長度后得到Rt△A1B1C1 . 試在圖中畫出Rt△A1B1C1 , 并寫出C1點的坐標;
(2)將Rt△ABC繞點B順時針旋轉90°后得到Rt△A2B2C2 . 試在圖中畫出Rt△A2B2C2 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某農(nóng)莊計劃在30畝空地上全部種植蔬菜和水果,菜農(nóng)小張和果農(nóng)小李分別承包了種植蔬菜和水果的任務.小張種植每畝蔬菜的工資y(元)與種植面積m(畝)之間的函數(shù)如圖①所示,小李種植水果所得報酬z(元)與種植面積n(畝)之間函數(shù)關系如圖②所示.
(1)如果種植蔬菜20畝,則小張種植每畝蔬菜的工資是元,小張應得的工資總額是元,此時,小李種植水果畝,小李應得的報酬是元;
(2)當10<n≤30時,求z與n之間的函數(shù)關系式;
(3)設農(nóng)莊支付給小張和小李的總費用為w(元),當10<m≤30時,求w與m之間的函數(shù)關系式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,函數(shù)y= 和y=﹣ 的圖象分別是l1和l2 . 設點P在l1上,PC⊥x軸,垂足為C,交l2于點A,PD⊥y軸,垂足為D,交l2于點B,則△PAB的面積為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某超市每天能出售甲、乙兩種肉集裝箱共21箱,且甲集裝箱3天的銷售量與乙集裝箱4天的銷售量相同.
(1)求甲、乙兩種肉類集裝箱每天分別能出售多少箱?
(2)若甲種肉類集裝箱的進價為每箱200元,乙種肉類集裝箱的進價為每箱180元,現(xiàn)超市打算購買甲、乙兩種肉類集裝箱共100箱,且手頭資金不到18080元,則該超市有幾種購買方案?
(3)若甲種肉類集裝箱的售價為每箱260元,乙種肉類集裝箱的售價為每箱230元,在(2)的情況下,哪種方案獲利最多?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】神仙居景區(qū)門票價格80元/人,景區(qū)為吸引游客,對門票價格進行動態(tài)管理,非節(jié)假日打a折,節(jié)假日期間,10人以下(包 括10人)不打折,10人以上超過10人的部分打b折,設游客為x人,門票費用為y元,非節(jié)假日門票費用y1(元)及節(jié)假日門票費用y2(元)與游客x(人)之間的函數(shù)關系如圖所示.
(1)a= , b=;
(2)直接寫出y1、y2與x之間的函數(shù)關系式;
(3)導游小王6月10日(非節(jié)假日)帶A旅游團,6月20日(端午節(jié))帶B旅游團到神仙居景區(qū)旅游,兩團共計50人,兩次共付門票費用3040元,求A、B兩個旅游團各多少人?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com