【題目】已知拋物線(a>0)與x軸相交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)P是拋物線上一點(diǎn),且PB=AB,∠PBA=120°,如圖所示

(1)求拋物線的解析式

(2)設(shè)點(diǎn)M(m,n)為拋物線上的一個動點(diǎn),且在曲線PA上移動

①當(dāng)點(diǎn)M在曲線PB之間(含端點(diǎn))移動時,是否存在點(diǎn)M使△APM的面積為?若存在,求點(diǎn)M的坐標(biāo);若不存在,請說明理由

②當(dāng)點(diǎn)M在曲線BA之間(含端點(diǎn))移動時,求|m|+|n|的最大值及取得最大值時點(diǎn)M的坐標(biāo)

【答案】(1);(2)存在,M(3,;M(,)或()時,|m|+|n|的最大值為

【解析】

試題分析:(1)先求出A、B兩點(diǎn)坐標(biāo),然后過點(diǎn)P作PC⊥x軸于點(diǎn)C,根據(jù)∠PBA=120°,PB=AB,分別求出BC和PC的長度即可得出點(diǎn)P的坐標(biāo),最后將點(diǎn)P的坐標(biāo)代入二次函數(shù)解析式即;

(2)①過點(diǎn)M作ME⊥x軸于點(diǎn)E,交AP于點(diǎn)D,分別用含m的式子表示點(diǎn)D、M的坐標(biāo),然后代入△APM的面積公式DMAC,根據(jù)題意列出方程求出m的值;

②根據(jù)題意可知:n<0,然后對m的值進(jìn)行分類討論,當(dāng)﹣2≤m≤0時,|m|=﹣m;當(dāng)0<m≤2時,|m|=m,列出函數(shù)關(guān)系式即可求得|m|+|n|的最大值.

試題解析:(1)如圖1,令y=0代入,∴,∵a>0,∴,∴x=±2,∴A(﹣2,0),B(2,0),∴AB=4,過點(diǎn)P作PC⊥x軸于點(diǎn)C,∴∠PBC=180°﹣∠PBA=60°,∵PB=AB=4,∴cos∠PBC=,∴BC=2,由勾股定理可求得:PC=,∵OC=OC+BC=4,∴P(4,),把P(4,)代入,∴=16a﹣4a,∴a=,∴拋物線解析式為;

(2)∵點(diǎn)M在拋物線上,∴,∴M的坐標(biāo)為(m,;

①當(dāng)點(diǎn)M在曲線PB之間(含端點(diǎn))移動時,∴2≤m≤4,如圖2,過點(diǎn)M作ME⊥x軸于點(diǎn)E,交AP于點(diǎn)D,設(shè)直線AP的解析式為y=kx+b,把A(﹣2,0)與P(4,)代入y=kx+b,得:,解得∴直線AP的解析式為:,令x=m代入,∴,∴D的坐標(biāo)為(m,),∴DM==,∴S△APM=DMAE+DMCE

=DM(AE+CE)=DMAC=,當(dāng)S△APM=時,∴=,∴解得m=3或m=﹣1,∵2≤m≤4,∴m=3,此時,M的坐標(biāo)為(3,);

②當(dāng)點(diǎn)M在曲線BA之間(含端點(diǎn))移動時,∴﹣2≤m≤2,n<0,當(dāng)﹣2≤m≤0時,∴|m|+|n|=﹣m﹣n==,當(dāng)m=時,∴|m|+|n|可取得最大值,最大值為,此時,M的坐標(biāo)為(,),當(dāng)0<m≤2時,∴|m|+|n|=m﹣n==,當(dāng)m=時,∴|m|+|n|可取得最大值,最大值為,此時,M的坐標(biāo)為(,),綜上所述,當(dāng)點(diǎn)M在曲線BA之間(含端點(diǎn))移動時,M的坐標(biāo)為(,)或()時,|m|+|n|的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】不等式兩邊加(或減)同一個數(shù)(或式子),不等號的方向不變,即如果a>b,那么a±cb±c.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面說法錯誤的是(  )
A.兩點(diǎn)確定一條直線
B.同角的補(bǔ)角相等
C.等角的余角相等
D.射線AB也可以寫作射線BA

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果2x2y3與x2yn+1是同類項(xiàng),那么n的值是( 。
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( )

A.平行四邊形的對角線相等

B.一組對邊平行,一組對邊相等的四邊形是平行四邊形

C.對角線互相平分的四邊形是平行四邊形

D.有兩對鄰角互補(bǔ)的四邊形是平行四邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與坐標(biāo)軸交于A、B、C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)B的坐標(biāo)為(﹣4,0)

(1)求該二次函數(shù)的表達(dá)式及點(diǎn)C的坐標(biāo);

(2)點(diǎn)D的坐標(biāo)為(0,4),點(diǎn)F為該二次函數(shù)在第一象限內(nèi)圖象上的動點(diǎn),連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設(shè)平行四邊形CDEF的面積為S

①求S的最大值;

②在點(diǎn)F的運(yùn)動過程中,當(dāng)點(diǎn)E落在該二次函數(shù)圖象上時,請直接寫出此時S的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列運(yùn)算正確的是( 。

A. a4÷a3aB. a24a6C. 2a2a21D. 3a32a26a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】AB、CD四位員工做一項(xiàng)工作,每天必須是三位員工同時做,另一位員工休息,當(dāng)完成這項(xiàng)工作時,D做了8天,比其他任何人都多,B做了5天,比其他任何人都少,那么A做了_____天.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】方程x﹣2=2﹣x的解是( 。

A. x=1 B. x=﹣1 C. x=2 D. x=0

查看答案和解析>>

同步練習(xí)冊答案