【題目】如圖,半圓O的直徑為AB,D是半圓上的一個動點(不與點A,B重合),連接BD并延長至點C,使CD=BD,過點D作半圓O的切線交AC于點E

(1)請猜想DEAC的位置關(guān)系,并說明理由;

(2)當(dāng)AB=6,BD=2,DE的長.

【答案】(1)猜想:DE⊥AC,證明詳見解析;(2)

【解析】

(1)連接,由切線的性質(zhì)知;中,分別為、的中點,即的中位線,因此,由此可得;

(2)連接,由圓周角定理知,即的垂直平分線,因此是等腰三角形,易證,可得,可在中,用勾股定理求得的長,進(jìn)而可根據(jù)上面的比例關(guān)系求出的長.

(1)猜想:DEAC

理由如下:

如圖,連接OD.

DEO的切線,切點為D

ODDE

BD=CD,OA=OB

ODAC

DEAC

(2)連接AD.

AB是半圓O的直徑,

∴∠ADB=90°BD=DC=2.

ADBC的垂直平分線.

AB=AC

∴∠ABD=∠ACD

DEAC,

∴∠CED=90°.

∴∠ADB=∠CED

∴Rt△ABD∽Rt△DCE

DEAB=ADDC

Rt△ABD中,AB=6,BD=2,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,將△ABC繞點C按順時針方向旋轉(zhuǎn)n度后,得到△DEC,點D剛好落在AB邊上.

1)求n的值;

2)若FDE的中點,判斷四邊形ACFD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某洗衣機在洗滌衣服時,經(jīng)歷了進(jìn)水、清洗、排水、脫水四個連續(xù)過程,其中進(jìn)水、清洗、排水時洗衣機中的水量y(升)與時間x(分鐘)之間的關(guān)系如折線圖所示,根據(jù)圖象解答下列問題:

1)在這個變化過程中,自變量、因變量是什么?

2)洗衣機的進(jìn)水時間是多少分鐘?清洗時洗衣機的水量是多少升?

3)時間為10分鐘時,洗衣機處于哪個過程?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線軸于點(10),直線軸于點(2,0),直線軸于點(3,0)……軸于點 (n,0).函數(shù)的圖象與直線、、、……分別交于點、、……;函數(shù)的圖象與直線、、……分別交于點、、、……;如果△的面積記作,四邊形的面積記作,四邊形的面積記作,……四邊形的面積記作,那么=( )

A.2017.5B.2018C.2018.5D.2019

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,AB=AC,點D是直線BC上一點(不與B、C重合),以AD為一邊在AD右側(cè)△ADE,使AD=AE,∠DAE =∠BAC,連接CE.

(1)如圖1,當(dāng)點D在線段BC上,如果∠BAC=90°,則∠BCE=________度;

(2)設(shè),

①如圖2,當(dāng)點在線段BC上移動,則之間有怎樣的數(shù)量關(guān)系?請說明理由;

②當(dāng)點在直線BC上移動,則,之間有怎樣的數(shù)量關(guān)系?請直接寫出你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】夏季即將來臨,某電器超市銷售每臺進(jìn)價分別為200元、170元的A,B兩種型號的電風(fēng)扇,下表是近兩周的銷售情況:

銷售時段

銷售數(shù)量

銷售收入

A種型號

B種型號

第一周

2

3

1130

第二周

5

6

2510

(進(jìn)價、售價均保持不變,利潤=銷售收入-進(jìn)貨成本)

(1)分別求出A,B兩種型號電風(fēng)扇的銷售單價;

(2)若超市準(zhǔn)備用不超過5400元的金額再采購這兩種型號的電風(fēng)扇共30臺,求A種型號的電風(fēng)扇最多能采購多少臺?

(3)在(2)的條件下,超市銷售完這30臺電風(fēng)扇能否實現(xiàn)利潤為1400元的目標(biāo)?若能,請給出相應(yīng)的采購方案;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+6過點A(6,0),B(4,6),與y軸交于點C

(1)求該拋物線的解析式;

(2)如圖1,直線l的解析式為y=x,拋物線的對稱軸與線段BC交于點P,過點P作直線l的垂線,垂足為點H,連接OP,求OPH的面積;

(3)把圖1中的直線y=x向下平移4個單位長度得到直線y=x-4,如圖2,直線y=x-4x軸交于點G.點P是四邊形ABCO邊上的一點,過點P分別作x軸、直線l的垂線,垂足分別為點EF.是否存在點P,使得以P,E,F為頂點的三角形是等腰三角形?若存在,直接寫出點P的坐標(biāo);若不存在,請說明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,,,若點從點出發(fā),以每秒的速度沿折線運動,設(shè)運動時間為.

1)若點上,且滿足時,求出此時的值;

2)若點恰好在的角平分線上,求的值;

3)在運動過程中,直接寫出當(dāng)為何值時,為等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓直徑,半徑OC⊥AB于點O,AD平分∠CAB交弧BC于點D,連結(jié)CD、OD,給出以下四個結(jié)論:①AC∥OD;②CE=OE;③△ODE∽△ADO;④.其中正確結(jié)論的序號是(。

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

同步練習(xí)冊答案