【題目】如圖,正方形ABCD中,AB=6,點E在邊CD上,且CD=3DE.將△ADE沿AE對折至△AFE,延長EF交邊BC于點G,連接AG、CF.下列結論:①△ABG≌△AFG;②BG=GC③AG∥CF④S△FGC=3.其中正確結論的個數(shù)是( 。

【答案】C

【解析】正確.因為AB=AD=AF,AG=AG∠B=∠AFG=90°,∴△ABG≌△AFG;

正確.因為:EF=DE=CD=2,設BG=FG=x,則CG=6﹣x.在直角△ECG中,根據(jù)勾股定理,得(6﹣x2+42=x+22,解得x=3.所以BG=3=6﹣3=GC;

正確.因為CG=BG=GF,所以△FGC是等腰三角形,∠GFC=∠GCF.又∠AGB=∠AGF∠AGB+∠AGF=180°﹣∠FGC=∠GFC+∠GCF,

∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF

錯誤.

FFH⊥DC,

∵BC⊥DH,

∴FH∥GC,

∴△EFH∽△EGC

=,

EF=DE=2GF=3,

∴EG=5,

==,

∴S△FGC=S△GCE﹣S△FEC=×3×4﹣×4××3=≠3

故選C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圓柱形玻璃杯高為12cm、底面周長為18cm,在杯內(nèi)離杯底4cm的點C

處有一滴蜂蜜,此時一只螞蟻正好在杯外壁,離杯上沿4cm與蜂蜜相對的點A處,則螞蟻到達蜂蜜的最

短距離為 cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖:在ABC中,BECF分別是AC、AB兩邊上的高,在BE上截取BD=AC,在CF的延長線上截取CG=AB,連接ADAG

1)求證:AD=AG;

2ADAG的位置關系如何,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了考察冰川的融化狀況,一支科考隊在某冰川上設定一個以大本營O為圓心,半徑為4km的圓形考察區(qū)域,線段P1P2是冰川的部分邊界線(不考慮其它邊界),當冰川融化時,邊界線沿著與其垂直的方向朝考察區(qū)域平行移動,若經(jīng)過n年,冰川的邊界線P1P2移動的距離為s(km),并且s與n(n為正整數(shù))的關系是s= n2 n+ .以O為原點,建立如圖所示的平面直角坐標系,其中P1、P2的坐標分別為(﹣4,9)、(﹣13、﹣3).
(1)求線段P1P2所在直線對應的函數(shù)關系式;
(2)求冰川邊界線移動到考察區(qū)域所需的最短時間.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】班級準備召開主題班會,現(xiàn)從由3名男生和2名女生所組成的班委中,隨機選取兩人擔任主持人,求兩名主持人恰為一男一女的概率.(請用“畫樹狀圖”或“列表”等方法寫出過程)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系xOy中,直線l經(jīng)過點A(﹣3,0),點B(0, ),點P的坐標為(1,0),⊙P與y軸相切于點O.若將⊙P沿x軸向左平移,平移后得到⊙P′(點P的對應點為點P′),當⊙P′與直線l相交時,橫坐標為整數(shù)的點P′共有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在四邊形ABCD中,∠ABC+ADC=180°,AB=BC.

(1)如圖1,若∠BAD=90°,AD=2,求CD的長度;

(2)如圖2,點P、Q分別在線段AD、DC上,滿足PQ=AP+CQ,求證:∠PBQ=90°ADC;

(3)如圖3,若點Q運動到DC的延長線上,點P也運動到DA的延長線上時,仍然滿足PQ=AP+CQ,則(2)中的結論是否成立?若成立,請給出證明過程,若不成立,請寫出∠PBQ與∠ADC的數(shù)量關系,并給出證明過程.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知△ABC的三個頂點的坐標分別為A(﹣2,3)、B(﹣6,0)、C(﹣1,0).
(1)請直接寫出于點B關于坐標原點O的對稱點B1的坐標;
(2)將△ABC繞坐標原點O逆時針旋轉90°,畫出對應的△A′B′C′圖形,直接寫出點A的對應點A′的坐標;
(3)若四邊形A′B′C′D′為平行四邊形,請直接寫出第四個頂點D′的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)和正比例函數(shù)y= x的圖象如圖所示,則方程ax2+(b﹣ )x+c=0(a≠0)的兩根之和(
A.大于0
B.等于0
C.小于0
D.不能確定

查看答案和解析>>

同步練習冊答案