【題目】如圖,四邊形OABC是平行四邊形,點(diǎn)C在x軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)A(5,12),且與邊BC交于點(diǎn)D.若AB=BD,則點(diǎn)D的坐標(biāo)為_____.
【答案】(8, )
【解析】解:∵反比例函數(shù)(x>0)的圖象經(jīng)過(guò)點(diǎn)A(5,12),∴k=12×5=60,∴反比例函數(shù)的解析式為,設(shè)D(m, ),由題可得OA的解析式為y=x,AO∥BC,∴可設(shè)BC的解析式為y=x+b,把D(m, )代入,可得m+b=,∴b=﹣m,∴BC的解析式為y=x+﹣m,令y=0,則x=m﹣,即OC=m﹣,∴平行四邊形ABCO中,AB=m﹣,如圖所示,過(guò)D作DE⊥AB于E,過(guò)A作AF⊥OC于F,則△DEB∽△AFO,∴,而AF=12,DE=12﹣,OA= =13,∴DB=13﹣,∵AB=DB,∴m﹣=13﹣,解得m1=5,m2=8,又∵D在A的右側(cè),即m>5,∴m=8,∴D的坐標(biāo)為(8, ).故答案為:(8, ).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直線l上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1、2、3,正放置的四個(gè)正方形的面積依次是S1、S2、S3、S4,則S1+2S2+2S3+S4=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某移動(dòng)通訊公司提供了A,B兩種方案的通訊費(fèi)用y(元)與通話時(shí)間x(分)之間的關(guān)系,如圖所示,則以下說(shuō)法錯(cuò)誤的是( )
A. 若通話時(shí)間少于120分,則A方案比B方案便宜20元
B. 若通話時(shí)間超過(guò)200分,則B方案比A方案便宜12元
C. 若通訊費(fèi)用為60元,則B方案比A方案的通話時(shí)間多
D. 若兩種方案通訊費(fèi)用相差10元,則通話時(shí)間是145分或185分
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=k1x+b與雙曲線y=相交于點(diǎn)A(1,2),B(m,-1)兩點(diǎn).
(1)分別求直線和雙曲線的表達(dá)式;
(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點(diǎn),且x1<x2<0<x3,請(qǐng)直接寫(xiě)出y1,y2,y3的大小關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC為等邊三角形,AQ=PQ,PR=PS,PR⊥AB于R,PS⊥AC于S,現(xiàn)有①點(diǎn)P在∠BAC的平分線上; ②AS=AR;③QP∥AR; ④△BRP≌△QSP四個(gè)結(jié)論.則對(duì)四個(gè)結(jié)論判斷正確的是( )
A. 僅①和②正確 B. 僅②③正確 C. 僅①和③正確 D. 全部都正確
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙、丙三位運(yùn)動(dòng)員在相同條件下各射靶10次,每次射靶的成績(jī)?nèi)缦拢?/span>
甲:9,10,8,5,7,8,10,8,8,7;
乙:5,7,8,7,8,9,7,9,10,10;
丙:7,6,8,5,4,7,6,3,9,5.
(1)根據(jù)以上數(shù)據(jù)完成下表:
平均數(shù) | 中位數(shù) | 方差 | |
甲 | 8 | 8 | |
乙 | 8 | 8 | 2.2 |
丙 | 6 | 3 |
(2)依據(jù)表中數(shù)據(jù)分析,哪位運(yùn)動(dòng)員的成績(jī)最穩(wěn)定,并簡(jiǎn)要說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,以AB為直徑的⊙O分別與BC、AC交于點(diǎn)D、E,過(guò)點(diǎn)D作⊙O的切線DF,交AC于點(diǎn)F.
(1)求證:DF⊥AC;
(2)若⊙O的半徑為4,∠CDF=22.5°,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y=(x>0)交于A(2,4),B(a,1),與x軸,y軸分別交于點(diǎn)C,D.
(1)直接寫(xiě)出一次函數(shù)y=kx+b的表達(dá)式和反比例函數(shù)y=(x>0)的表達(dá)式;
(2)求證:AD=BC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,對(duì)角線AC,BD相交于O點(diǎn),點(diǎn)P是線段AD上一動(dòng)點(diǎn)(不與點(diǎn)D重合),PO的延長(zhǎng)線交BC于Q點(diǎn).
(1)求證:四邊形PBQD為平行四邊形.
(2)若AB=3cm,AD=4cm,P從點(diǎn)A出發(fā).以1cm/s的速度向點(diǎn)D勻速運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts,問(wèn):四邊形PBQD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com