【題目】如圖,四邊形OABC是平行四邊形,點(diǎn)C在x軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過(guò)點(diǎn)A(5,12),且與邊BC交于點(diǎn)D.若AB=BD,則點(diǎn)D的坐標(biāo)為_____

【答案】8

【解析】解:∵反比例函數(shù)x0)的圖象經(jīng)過(guò)點(diǎn)A5,12),k=12×5=60反比例函數(shù)的解析式為,設(shè)Dm, ),由題可得OA的解析式為y=x,AOBC,可設(shè)BC的解析式為y=x+b,把Dm, )代入,可得m+b=,b=m,BC的解析式為y=x+m,令y=0,則x=m,即OC=m,平行四邊形ABCO中,AB=m,如圖所示,過(guò)DDEABE,過(guò)AAFOCF,則DEB∽△AFO,,而AF=12,DE=12OA= =13,DB=13,AB=DB,m=13,解得m1=5,m2=8,又DA的右側(cè),即m5,m=8,D的坐標(biāo)為(8, ).故答案為:(8, ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直線l上依次擺放著七個(gè)正方形,已知斜放置的三個(gè)正方形的面積分別為1、2、3,正放置的四個(gè)正方形的面積依次是S1、S2、S3、S4,則S1+2S2+2S3+S4=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某移動(dòng)通訊公司提供了A,B兩種方案的通訊費(fèi)用y(元)與通話時(shí)間x(分)之間的關(guān)系,如圖所示,則以下說(shuō)法錯(cuò)誤的是( )

A. 若通話時(shí)間少于120分,則A方案比B方案便宜20元

B. 若通話時(shí)間超過(guò)200分,則B方案比A方案便宜12元

C. 若通訊費(fèi)用為60元,則B方案比A方案的通話時(shí)間多

D. 若兩種方案通訊費(fèi)用相差10元,則通話時(shí)間是145分或185分

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,直線y=k1x+b與雙曲線y=相交于點(diǎn)A(1,2),B(m,-1)兩點(diǎn).

(1)分別求直線和雙曲線的表達(dá)式;

(2)若A1(x1,y1),A2(x2,y2),A3(x3,y3)為雙曲線上的三點(diǎn),且x1<x2<0<x3,請(qǐng)直接寫(xiě)出y1,y2,y3的大小關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABC為等邊三角形,AQ=PQ,PR=PS,PRABRPSACS,現(xiàn)有①點(diǎn)P在∠BAC的平分線上; AS=AR;QPAR; ④△BRP≌△QSP四個(gè)結(jié)論.則對(duì)四個(gè)結(jié)論判斷正確的是(

A. 僅①和②正確 B. 僅②③正確 C. 僅①和③正確 D. 全部都正確

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙、丙三位運(yùn)動(dòng)員在相同條件下各射靶10次,每次射靶的成績(jī)?nèi)缦拢?/span>

甲:9,10,8,5,7,810,8,8,7;

乙:5,7,8,7,89,79,10,10;

丙:7,68,5476,39,5

1)根據(jù)以上數(shù)據(jù)完成下表:

平均數(shù)

中位數(shù)

方差

8

8

8

8

2.2

6

3

2)依據(jù)表中數(shù)據(jù)分析,哪位運(yùn)動(dòng)員的成績(jī)最穩(wěn)定,并簡(jiǎn)要說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC中,ABAC,以AB為直徑的⊙O分別與BC、AC交于點(diǎn)D、E,過(guò)點(diǎn)D作⊙O的切線DF,交AC于點(diǎn)F

1)求證:DFAC;

2)若⊙O的半徑為4CDF22.5°,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)ykxb與反比例函數(shù)yx0)交于A2,4),Ba1),與x軸,y軸分別交于點(diǎn)C,D

1)直接寫(xiě)出一次函數(shù)ykxb的表達(dá)式和反比例函數(shù)yx0)的表達(dá)式;

2)求證:ADBC

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,對(duì)角線AC,BD相交于O點(diǎn),點(diǎn)P是線段AD上一動(dòng)點(diǎn)(不與點(diǎn)D重合),PO的延長(zhǎng)線交BCQ點(diǎn).

1)求證:四邊形PBQD為平行四邊形.

2)若AB=3cmAD=4cm,P從點(diǎn)A出發(fā).以1cm/s的速度向點(diǎn)D勻速運(yùn)動(dòng).設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為ts,問(wèn):四邊形PBQD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案