【題目】一個(gè)不透明的口袋中有4個(gè)大小、質(zhì)地完全相同的乒乓球,球面上分別標(biāo)有數(shù)-12,-3,4

1)搖勻后任意摸出1個(gè)球,則摸出的乒乓球球面上的數(shù)是負(fù)數(shù)的概率為________

2)搖勻后先從中任意摸出1個(gè)球(不放回),再?gòu)挠嘞碌?/span>3個(gè)球中任意摸出1個(gè)球,用列表或畫(huà)樹(shù)狀圖的方法求兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的概率.

【答案】1;(2

【解析】

1)直接利用概率公式計(jì)算;

2)畫(huà)樹(shù)狀圖展示所有12種等可能的結(jié)果數(shù),找出兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的結(jié)果數(shù),然后根據(jù)公式求解.

1)搖勻后任意摸出1個(gè)球,則摸出的乒乓球球面上的數(shù)是負(fù)數(shù)的概率;

故答案為;

2)畫(huà)樹(shù)狀圖為:

共有12種等可能的結(jié)果數(shù),其中兩次摸出的乒乓球球面上的數(shù)之和是正數(shù)的結(jié)果數(shù)為8,

所以?xún)纱蚊龅钠古仪蚯蛎嫔系臄?shù)之和是正數(shù)的概率

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:ABC在直角坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個(gè)小正方形的邊長(zhǎng)是一個(gè)單位長(zhǎng)度).

(1)畫(huà)出ABC向下平移4個(gè)單位長(zhǎng)度得到的A1B1C1,點(diǎn)C1的坐標(biāo)是  ;

(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫(huà)出A2B2C2,使A2B2C2ABC位似,且位似比為2:1,點(diǎn)C2的坐標(biāo)是   ;

(3)A2B2C2的面積是   平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:△ABC在坐標(biāo)平面內(nèi),三個(gè)頂點(diǎn)的坐標(biāo)分別為A0,3),B3,4),C22).(正方形網(wǎng)格中,每個(gè)小正方形的邊長(zhǎng)是1個(gè)單位長(zhǎng)度)

1)畫(huà)出△ABC向下平移4個(gè)單位,再向左平移1個(gè)單位得到的△A1B1C1,并直接寫(xiě)出C1點(diǎn)的坐標(biāo);

2)作出△ABC繞點(diǎn)A順時(shí)針?lè)较蛐D(zhuǎn)90°后得到的△A2B2C2,并直接寫(xiě)出C2點(diǎn)的坐標(biāo);

3)作出△ABC關(guān)于原點(diǎn)O成中心對(duì)稱(chēng)的△A3B3C3,并直接寫(xiě)出B3的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,平行四邊形ABCD中,E是CD的延長(zhǎng)線上一點(diǎn),BE與AD交于點(diǎn)F,CD=2DE.若△DEF的面積為a,則平行四邊形ABCD的面積為  ▲  (用a的代數(shù)式表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知BC是⊙O的直徑,A是⊙O上一點(diǎn),ADBC,垂足為D,BEAD于點(diǎn)F

1ACB與∠BAD相等嗎?為什么?

(2)判斷△FAB的形狀,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線過(guò)點(diǎn),與y軸交于點(diǎn)C,連接AC,BC,將沿BC所在的直線翻折,得到,連接OD

1)用含a的代數(shù)式表示點(diǎn)C的坐標(biāo).

2)如圖1,若點(diǎn)D落在拋物線的對(duì)稱(chēng)軸上,且在x軸上方,求拋物線的解析式.

3)設(shè)的面積為S1,的面積為S2,若,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,BDABCD的對(duì)角線,按以下步驟作圖:分別以點(diǎn)B和點(diǎn)D為圓心,大于BD的長(zhǎng)為半徑作弧,兩弧相交于E,F兩點(diǎn);作直線EF,分別交ADBC于點(diǎn)M,N,連接BM,DN.若BD8MN6,則ABCD的邊BC上的高為___

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知ABC,ACB=90°,CE是中線ACDACE關(guān)于直線AC對(duì)稱(chēng)

1)求證:四邊形ADCE是菱形;

2)求證:BC=ED

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(發(fā)現(xiàn))x45x2+40是一個(gè)一元四次方程.

(探索)根據(jù)該方程的特點(diǎn),通常用換元法解方程:

設(shè)x2y,那么x4   ,于是原方程可變?yōu)?/span>   

解得:y11,y2   

當(dāng)y1時(shí),x21,∴x±1

當(dāng)y   時(shí),x2   ,∴x   

原方程有4個(gè)根,分別是   

(應(yīng)用)仿照上面的解題過(guò)程,求解方程:(x22x2+x22x)﹣60

查看答案和解析>>

同步練習(xí)冊(cè)答案