【題目】已知二次函數(shù)y=﹣x2+2bx+c的圖象經(jīng)過(guò)點(diǎn)M(1,0),頂點(diǎn)坐標(biāo)(m,n)
(1)當(dāng)x<5時(shí),y隨x的增大而增大,求b的取值范圍;
(2)求n關(guān)于m的函數(shù)解析式;
(3)求該二次函數(shù)的圖象頂點(diǎn)最低時(shí)的解析式.
【答案】(1)b≥5;(2)n=m2﹣2m+1;(3)y=﹣x2+2x﹣1.
【解析】
(1)由二次函數(shù)y=﹣x2+2bx+c可知開口向下,求出對(duì)稱軸為x=b,進(jìn)而求得b的取值范圍.
(2)由圖象經(jīng)過(guò)點(diǎn)M(1,0),可將M點(diǎn)坐標(biāo)代入求出c=1﹣2b,進(jìn)而利用頂點(diǎn)坐標(biāo)公式即可求值.
(3)由n=(m﹣1)2,可求得最低點(diǎn)(1,0),進(jìn)而代入求得函數(shù)解析式.
解:(1)由二次函數(shù)y=﹣x2+2bx+c可知開口向下,對(duì)稱軸為直線x=b,
∵當(dāng)x<5時(shí),y隨x的增大而增大,
∴b≥5;
(2)∵二次函數(shù)y=﹣x2+2bx+c的圖象經(jīng)過(guò)點(diǎn)M(1,0),
∴﹣1+2b+c=0,
∴c=1﹣2b,
∵m=b,n==c+b2=1﹣2b+b2,
∴n=m2﹣2m+1;
(3)∵n=(m﹣1)2,
∴頂點(diǎn)有最低點(diǎn)(1,0),
∵a=﹣1,
∴二次函數(shù)的解析式為y=﹣(x﹣1)2=﹣x2+2x﹣1.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線y=ax2+bx+c過(guò)頂點(diǎn)A(0,2),以原點(diǎn)O為圓心,OA為半徑的圓與拋物線的另兩個(gè)交點(diǎn)為B,C,且B在C的左側(cè),△ABC有一個(gè)內(nèi)角為60°.
(1)求拋物線的解析式.
(2)若MN與直線y=﹣2x平行,M(x1,y1),N(x2,y2),M,N都在拋物線上,且M,N位于直線BC的兩側(cè),y1>y2,ME⊥BC于E,NF⊥BC于F,解決以下問(wèn)題:
①求證:.
②求△MBC外心的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點(diǎn).
(1)求反比例函數(shù)的解析式;
(2)求的面積;
(3)如圖寫出反比例函數(shù)值大于一次函數(shù)值的自變量的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,點(diǎn)M、N分別在AB、BC上,AB=4,AM=1,BN=.
(1)求證:ΔADM∽ΔBMN;
(2)求∠DMN的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)經(jīng)銷的太陽(yáng)路燈,標(biāo)價(jià)為4000元/個(gè),促銷活動(dòng)期間,其優(yōu)惠方法如下:
A.一次性購(gòu)買數(shù)量不超過(guò)80個(gè),按標(biāo)價(jià)收費(fèi);
B.一次性購(gòu)買數(shù)量超過(guò)80個(gè),每多買一個(gè),所購(gòu)路燈每個(gè)可降價(jià)8元,但單價(jià)最低不能低于3200元/個(gè).
(1)購(gòu)買80個(gè)這樣的路燈,應(yīng)需付款_________________元.
(2)若一顧客一次性購(gòu)買這樣的路燈用去516000元,則該顧客實(shí)際購(gòu)買了多少個(gè)這樣的路燈.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分9分)
根據(jù)要求,解答下列問(wèn)題.
(1)根據(jù)要求,解答下列問(wèn)題.
①方程x2-2x+1=0的解為________________________;
②方程x2-3x+2=0的解為________________________;
③方程x2-4x+3=0的解為________________________;
…… ……
(2)根據(jù)以上方程特征及其解的特征,請(qǐng)猜想:
①方程x2-9x+8=0的解為________________________;
②關(guān)于x的方程________________________的解為x1=1,x2=n.
(3)請(qǐng)用配方法解方程x2-9x+8=0,以驗(yàn)證猜想結(jié)論的正確性.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,線段AB、DC分別表示甲、乙兩建筑物的高,AB⊥BC,DC⊥BC,從B點(diǎn)測(cè)得D點(diǎn)的仰角α為60°從A點(diǎn)測(cè)得D點(diǎn)的仰角β為30°,已知甲建筑物高AB=36米.
(1)求乙建筑物的高DC;
(2)求甲、乙兩建筑物之間的距離BC
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知中,,,點(diǎn),分別在邊,上(不與端點(diǎn)重合),,射線交延長(zhǎng)線于點(diǎn),點(diǎn)在直線上,.
(1)(觀察猜想)如圖1,點(diǎn)在射線上,當(dāng)時(shí),
①線段與的數(shù)量關(guān)系是______;
②的度數(shù)是______;
(2)(探究證明)如圖2點(diǎn)在射線上,當(dāng)時(shí),判斷并證明線段與的數(shù)量關(guān)系,求的度數(shù);
(3)(拓展延伸)如圖3,點(diǎn)在直線上,當(dāng)時(shí),,點(diǎn)是邊上的三等分點(diǎn),直線與直線交于點(diǎn),請(qǐng)直接寫出線段的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知,是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).
(1)求反比例函數(shù)和一次函數(shù)的解析式;
(2)求△的面積;
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com