【題目】某商場經(jīng)銷的太陽路燈,標(biāo)價為4000元/個,促銷活動期間,其優(yōu)惠方法如下:
A.一次性購買數(shù)量不超過80個,按標(biāo)價收費;
B.一次性購買數(shù)量超過80個,每多買一個,所購路燈每個可降價8元,但單價最低不能低于3200元/個.
(1)購買80個這樣的路燈,應(yīng)需付款_________________元.
(2)若一顧客一次性購買這樣的路燈用去516000元,則該顧客實際購買了多少個這樣的路燈.
【答案】(1)320000元;(2)該顧客實際購買了150個路燈
【解析】
(1)數(shù)量單價就可以求得答案;
(2)先判斷出該顧客購買路燈數(shù)量超過80個,按照降價后的單價與數(shù)量的積等于516000,構(gòu)成方程,可求得答案,注意要舍去不合題意的值.
(1)元;
(2)516000>320000元,
∴數(shù)量超過了80個,
方法一:設(shè)實際購買了個這樣的路燈,
,
,
當(dāng)時,元,
,所以不合題意,舍去.
答:該顧客實際購買了150個路燈.
(注意:檢驗的過程也可以解不等式求的范圍:
);
方法二:516000>320000元,
∴數(shù)量超過了80個,
設(shè)比80個多了個,
,
,
,
當(dāng)時,元,
,所以不合題意,舍去.
當(dāng)時,,
答:該顧客購買了150個路燈.
(檢驗過程也可以解不等式求的范圍:
).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,,,,于點D,將繞點B順時針旋轉(zhuǎn)得到
如圖2,當(dāng)時,求點C、E之間的距離;
在旋轉(zhuǎn)過程中,當(dāng)點A、E、F三點共線時,求AF的長;
連結(jié)AF,記AF的中點為P,請直接寫出線段CP長度的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的二次函數(shù)的圖象中,劉星同學(xué)觀察得出了下面四條信息:①;②;③;④.你認(rèn)為其中錯誤的有( )個.
A.1B.2
C.3D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商品的進(jìn)價為每件30元,現(xiàn)在的售價為每件40元,每星期可賣出200件.市場調(diào)查反映:如果每件的售價每漲1元,那么每星期少賣10件.設(shè)每件漲價x元,每星期的銷量為y件.
(1)求y與x的函數(shù)關(guān)系式;
(2)如何定價才能使每星期的利潤最大且每星期的銷量較大?每星期的最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知OA=12cm,OB=6cm.點P從點O開始沿0A邊向點A以1cm/s的速度移動;點Q從點B開始沿BO邊向點O以1cm/s的速度移動,如果點P、Q同時出發(fā),用t(s)表示移動的時間(0≤t<6),那么:
(1)設(shè)ΔPOQ的面積為y,求y關(guān)于t的函數(shù)關(guān)系式;
(2)當(dāng)ΔPOQ的面積為4.5cm時,ΔPOQ沿直線PQ翻折后得到ΔPCQ.試判斷點C是否落在直線AB上,并說明理由;
(3)當(dāng)t為何值時,△POQ與△AOB相似.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2+2bx+c的圖象經(jīng)過點M(1,0),頂點坐標(biāo)(m,n)
(1)當(dāng)x<5時,y隨x的增大而增大,求b的取值范圍;
(2)求n關(guān)于m的函數(shù)解析式;
(3)求該二次函數(shù)的圖象頂點最低時的解析式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,二次函數(shù)的圖象與x軸的一個交點為A(3,0),另一個交點為B,且與y軸交于點C.
(1)求m的值;
(2)求點B的坐標(biāo);
(3)該二次函數(shù)圖像上有一點D(x,y)(其中,),使,求點D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在網(wǎng)格圖中,與是位似圖形.
若在網(wǎng)格上建立平面直角坐標(biāo)系,使得點A的坐標(biāo)為,點的坐標(biāo)為,寫出點B的坐標(biāo);
以點A為位似中心,在網(wǎng)格圖中作,使和位似,且位似比為1:2;
在圖上標(biāo)出與的位似中心P,并寫出點P的坐標(biāo),計算四邊形ABCP的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA、PB為圓O的切線,切點分別為A、B,PO交AB于點C,PO的延長線交圓O于點D,下列結(jié)論不一定成立的是( )
A. PA=PBB. ∠BPD=∠APDC. AB⊥PDD. AB平分PD
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com