【題目】如圖,在ABC中,AB=AC,O為BC的中點(diǎn),AC與半圓O相切于點(diǎn)D.

(1)求證:AB是半圓O所在圓的切線;

(2)若cosABC=,AB=12,求半圓O所在圓的半徑.

【答案】(1)詳見解析;(2).

【解析】

試題分析:(1)根據(jù)等腰三角形的性質(zhì),可得OA,根據(jù)角平分線的性質(zhì),可得OE,根據(jù)切線的判定,可得答案;(2)根據(jù)銳角三角函數(shù),可得OB的長,根據(jù)勾股定理,可得OA的長,根據(jù)三角形的面積,可得OE的長.

試題解析:(1)證明:如圖1,

作ODAC于D,OEAB于E,

AB=AC,O為BC的中點(diǎn),

∴∠CAO=BAO.

ODAC于D,OEAB于E,

OD=OE,

AB經(jīng)過圓O半徑的外端,

AB是半圓O所在圓的切線;

(2)cosABC=,AB=12,得OB=8.

由勾股定理,得AO=4

由三角形的面積,得SAOB=ABOE=OBAO,

OE==

即半圓O所在圓的半徑是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】矩形具有而菱形不具有的性質(zhì)是(  )

A. 兩組對(duì)邊分別平行 B. 對(duì)角線相等 C. 對(duì)角線互相平分 D. 兩組對(duì)角分別相等

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某大型超市從生產(chǎn)基地購進(jìn)一批水果,運(yùn)輸過程中質(zhì)量損失10%,假設(shè)不計(jì)超市其它費(fèi)用,如果超市要想至少獲得20%的利潤,那么這種水果的售價(jià)在進(jìn)價(jià)的基礎(chǔ)上應(yīng)至少提高(
A.40%
B.33.4%
C.33.3%
D.30%

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,有矩形AOBC,點(diǎn)A、B的坐標(biāo)分別為(0,4)、(10,0),點(diǎn)P的坐標(biāo)為(2,0),點(diǎn)M在線段AO上,點(diǎn)N在線段AC上,總有∠MPN=90 ,點(diǎn)M從點(diǎn)O運(yùn)動(dòng)到點(diǎn)A,當(dāng)點(diǎn)M運(yùn)動(dòng)到A點(diǎn)時(shí),點(diǎn)N與點(diǎn)C重合(如圖2)。令AM=x

(1).直接寫出點(diǎn)C的坐標(biāo)___________;

(2)①設(shè)MN2=y,請(qǐng)寫出y關(guān)于x的函數(shù)關(guān)系式,并求出y的最小值;

②連接APMN于點(diǎn)D,若MNA P,求x的值;

(3)、當(dāng)點(diǎn)M在邊AO上運(yùn)動(dòng)時(shí),∠PMN的大小是否發(fā)生變化?請(qǐng)說明理由.

1 2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC,按如下步驟作圖:

①分別以A、C為圓心,以大于 AC的長為半徑在AC兩邊作弧,交于兩點(diǎn)M、N;
②連接MN,分別交AB、AC于點(diǎn)D、O;
③過C作CE∥AB交MN于點(diǎn)E,連接AE、CD.
(1)求證:四邊形ADCE是菱形;
(2)當(dāng)∠ACB=90°,BC=6,△ADC的周長為18時(shí),求四邊形ADCE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列調(diào)查中,哪些適合抽樣調(diào)查?哪些適合全面調(diào)查?

(1)工廠準(zhǔn)備對(duì)一批即將出廠的飲料中含有細(xì)菌總數(shù)的情況進(jìn)行調(diào)查;

(2)小明準(zhǔn)備對(duì)全班同學(xué)所喜愛的球類運(yùn)動(dòng)的情況進(jìn)行調(diào)查;

(3)某農(nóng)田保護(hù)區(qū)對(duì)區(qū)內(nèi)的水稻秧苗的高度進(jìn)行調(diào)查.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某日最低氣溫為零下6℃,記為﹣6℃,最高氣溫為零上2℃,則這日氣溫x(℃)的取值范圍是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=4,BC=).P為邊BC上一動(dòng)點(diǎn)(不與B、C重合),過P點(diǎn)作PE⊥AP交直線CD于E.

(1)求證:△ABP∽△PCE;

(2)當(dāng)P為BC中點(diǎn)時(shí),E恰好為CD的中點(diǎn),求的值;

(3)若=12,DE=1,求BP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線EO⊥CD于點(diǎn)O,直線AB平分∠EOD,則∠BOD的度數(shù)是

查看答案和解析>>

同步練習(xí)冊(cè)答案