【題目】如圖1,在平面直角坐標系中,已知點,的坐標分別為和,點為軸正半軸上的一個動點,過點、、作的外接圓,連結并延長交圓于點,連結、.
(1)求證:.
(2)當時,求的長度.
(3)如圖2,連結,求線段的最小值及當最小時的外接圓圓心的坐標.
【答案】(1)見解析;(2);(3)OD最小值為9,C(,)
【解析】
(1)根據(jù)圓周角定理得出∠ABD=90°,再根據(jù)同弧所對的圓周角相等得出∠ADB=∠AEB,從而證明結論;
(2)根據(jù)條件算出AB,證明△ABD∽△AOE,得出,解得AE,再根據(jù)勾股定理算出OE的長;
(3)設直線BD與y軸交于點F,得出當OD⊥BD時,OD最小,通過解直角三角形算出OD,BD,過點D作DG⊥BE于點G,設OG=x,利用勾股定理解出OG和DG,從而得到點D坐標,結合點A坐標得出圓心C的坐標.
解:(1)由題意可得:AD為⊙O的直徑,
∴∠ABD=∠AOE=90°,
∵∠ADB=∠AEB,∠AOE=90°
∴∠OAE=∠BAD;
(2)∵和,
∴OA=6,OB=,
∴AB=,
∵AD=15,
由(1)得:∠OAE=∠BAD,∠ABD=∠AOE,
∴△ABD∽△AOE,
∴,
即,
解得:AE=,
∴OE=;
(3)設直線BD與y軸交于點F,
∵AB⊥BD,
∴∠OBD=∠OAB=90°-∠ABO,
直線AB位置不變,
∴直線BD位置不變,
∴當OD⊥BD時,OD最小,
此時,OD=OB×sin∠OBD=OB×sin∠OAB=×=×=9,
BD=,
過點D作DG⊥BE于點G,設OG=x,則BG=-x,
在△OBD中,BD2-BG2=OD2-OG2,
即,
解得:x=,即OG=,
DG=,
由題意可得點D在第三象限,
∴點D坐標為(,),而點A(0,6),
∴點C坐標為(,),即(,).
科目:初中數(shù)學 來源: 題型:
【題目】已知BC是⊙O的直徑,點D是BC延長線上一點,AB=AD,AE是⊙O的弦,∠AEC=30°.
(1)求證:直線AD是⊙O的切線;
(2)若AE⊥BC,垂足為M,⊙O的半徑為4,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,⊙O的半徑為4,點A是⊙O上一點,直線l過點A;P是⊙O上的一個動點(不與點A重合),過點P作PB⊥l于點B,交⊙O于點E,直徑PD延長線交直線l于點F,點A是的中點.
(1)求證:直線l是⊙O的切線;
(2)若PA=6,求PB的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是☉的直徑,為☉上一點,是半徑上一動點(不與重合),過點作射線,分別交弦,于兩點,過點的切線交射線于點.
(1)求證:.
(2)當是的中點時,
①若,判斷以為頂點的四邊形是什么特殊四邊形,并說明理由;
②若,且,則_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形的四個頂點分別在矩形的各條邊上,,,.有以下四個結論:①;②;③;④矩形的面積是.其中正確的結論為( )
A.①②B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,方格紙中的每個小方格都是邊長為1個單位的正方形.Rt△ABC的頂點均在格點上,建立平面直角坐標系后,點A的坐標為(﹣4,1),點B的坐標為(﹣1,1).
(1)先將Rt△ABC向右平移5個單位,再向下平移1個單位后得到Rt△A1B1C1.試在圖中畫出圖形Rt△A1B1C1,并寫出A1的坐標;
(2)將Rt△A1B1C1繞點A1順時針旋轉90°后得到Rt△A2B2C2,試在圖中畫出圖形Rt△A2B2C2.并計算Rt△A1B1C1在上述旋轉過程中C1所經過的路程.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠B=30°,點D、E分別在邊AC、AB上,AD=14,點P是邊BC上一動點,當PD+PE的值最小時,AE=15,則BE為( )
A.30B.29C.28D.27
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】毛澤東在《沁園春·雪》中提到五位歷史名人:秦始皇、漢武帝、唐太宗、宋太祖、成吉思汗,小紅將這五位名人簡介分別寫在五張完全相同的知識卡片上.
(1)小哲從中隨機抽取一張,求卡片上介紹的人物是唐太宗的概率;
(2)用樹狀圖或列表法求小哲從中隨機抽取兩張,卡片上介紹的人物均是漢朝以后出生的概率.(注:唐太宗、宋太祖、成吉思汗均是漢朝以后出生)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)(x>0)的圖象與直線相交于點A,與直線y=kx(k≠0)相交于點B,若△OAB的面積為18,則k的值為_______________.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com