【題目】如圖,在△ABC中,BC的垂直平分線MN交AB于點(diǎn)D,CD平分∠ACB.若AD=2,BD=3,則AC的長為_____.
【答案】
【解析】
作AM⊥BC于E,由角平分線的性質(zhì)得出,設(shè)AC=2x,則BC=3x,由線段垂直平分線得出MN⊥BC,BN=CN=x,得出MN∥AE,得出,NE=x,BE=BN+EN=x,CE=CNEN=x,再由勾股定理得出方程,解方程即可得出結(jié)果.
解:作AM⊥BC于E,如圖所示:
∵CD平分∠ACB,
∴,
設(shè)AC=2x,則BC=3x,
∵MN是BC的垂直平分線,
∴MN⊥BC,BN=CN=x,
∴MN∥AE,
∴,
∴NE=x,
∴BE=BN+EN=x,CE=CNEN=x,
由勾股定理得:AE2=AB2BE2=AC2CE2,
即52(x)2=(2x)2(x)2,
解得:x=,
∴AC=2x=;
故答案為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,經(jīng)過點(diǎn)B(0,2)的直線y=kx+b與x軸交于點(diǎn)C,與正比例函數(shù)y=ax的圖象交于點(diǎn)A(﹣1,3)
(1)求直線AB的函數(shù)的表達(dá)式;
(2)直接寫出不等式(kx+b)﹣ax<0的解集;
(3)求△AOC的面積;
(4)點(diǎn)P是直線AB上的一點(diǎn),且知△OCP是等腰三角形,寫出所有符合條件的點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“母親節(jié)”前夕,我市某校學(xué)生積極參與“關(guān)愛貧困母親”的活動(dòng),他們購進(jìn)一批單價(jià)為20元的“孝文化衫”在課余時(shí)間進(jìn)行義賣,要求每件銷售價(jià)格不得高于27元,并將所得利潤捐給貧困母親。經(jīng)試驗(yàn)發(fā)現(xiàn),若每件按22元的價(jià)格銷售時(shí),每天能賣出42件;若每件按25元的價(jià)格銷售時(shí),每天能賣出33件.假定每天銷售件數(shù)y(件)與銷售價(jià)格x(元/件)滿足一個(gè)以x為自變量的一次函數(shù).
(1)求y與x滿足的函數(shù)關(guān)系式(不要求寫出x的取值范圍);
(2)在不積壓且不考慮其他因素的情況下,銷售價(jià)格定為多少元時(shí),才能使每天獲得的利潤最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)從A地到B地,某甲走直徑AB上方的半圓途徑;乙先走直徑AC上方半圓的途徑,再走直徑CB下方半圓的途徑,如圖1,已知AB=40米,AC=30米,計(jì)算個(gè)人所走的路程,并比較兩人所走路程的遠(yuǎn)近;
(2)如果甲.乙走的路程圖改成圖2,兩人走的路程遠(yuǎn)近相同嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場用14500元購進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)與銷售價(jià)如表(二)所示:
求:(1)購進(jìn)甲、乙兩種礦泉水各多少箱?
(2)該商場售完這500箱礦泉水,可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了解七年級(jí)學(xué)生的體育成績,從全年級(jí)學(xué)生中隨機(jī)抽取部分學(xué)生進(jìn)行“雙飛”跳繩測(cè)試,結(jié)果分為A,B,C,D四個(gè)等級(jí),請(qǐng)跟進(jìn)兩幅統(tǒng)計(jì)圖中的信息回答下列問題:
(1)本次抽樣調(diào)查共抽取了多少名學(xué)生?
(2)求測(cè)試結(jié)果為C等級(jí)的學(xué)生數(shù),并補(bǔ)全條形圖;
(3)若該學(xué)校七年級(jí)共有400名學(xué)生,請(qǐng)你估計(jì)該學(xué)校七年級(jí)學(xué)生中“雙飛”跳繩測(cè)試結(jié)果為D等級(jí)的學(xué)生有多少名.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下列材料:已知實(shí)數(shù)m,n滿足(2m2+n2+1)(2m2+n2﹣1)=80,試求2m2+n2的值
解:設(shè)2m2+n2=t,則原方程變?yōu)椋?/span>t+1)(t﹣1)=80,整理得t2﹣1=80,t2=81,∴t=±9因?yàn)?/span>2m2+n2≥0,所以2m2+n2=9.
上面這種方法稱為“換元法”,把其中某些部分看成一個(gè)整體,并用新字母代替(即換元),則能使復(fù)雜的問題簡單化.
根據(jù)以上閱讀材料內(nèi)容,解決下列問題,并寫出解答過程.
已知實(shí)數(shù)x,y滿足(4x2+4y2+3)(4x2+4y2﹣3)=27,求x2+y2的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,D是BC的中點(diǎn),DE⊥BC交AC于點(diǎn)E,已知AD=AB,連接BE交AD于點(diǎn)F,下列結(jié)論:①BE=CE;②∠CAD=∠ABE;③S△ABF=3S△DEF;④△DEF∽△DAE,其中正確的有( )
A. 1個(gè) B. 4個(gè) C. 3個(gè) D. 2個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】根據(jù)第五次、第六次全國人口普查結(jié)果顯示:某市常住人口總數(shù)由第五次的400萬人增加到第六次的450萬人,常住人口的學(xué)歷狀況統(tǒng)計(jì)圖如圖所示(部分信息未給出):
解答下列問題:
(1)求第六次人口普查小學(xué)學(xué)歷的人數(shù),并把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(2)求第五次人口普查中該市常住人口每萬人中具有初中學(xué)歷的人數(shù);
(3)第六次人口普查結(jié)果與第五次相比,每萬人中初中學(xué)歷的人數(shù)增加了多少人?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com