【題目】在中,,,過(guò)點(diǎn)作直線(xiàn),將繞點(diǎn)順時(shí)針旋轉(zhuǎn)得到(點(diǎn)的對(duì)應(yīng)點(diǎn)分別為),射線(xiàn)分別交直線(xiàn)于點(diǎn).
(1)如圖,當(dāng)與重合時(shí),求的度數(shù);
(2)如圖,設(shè)與的交點(diǎn)為,當(dāng)為的中點(diǎn)時(shí),求線(xiàn)段的長(zhǎng);
(3)在旋轉(zhuǎn)過(guò)程中,當(dāng)點(diǎn)分別在的延長(zhǎng)線(xiàn)上時(shí),試探究四邊形的面積是否存在最小值.若存在,求出四邊形的最小面積;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2);(3),見(jiàn)解析.
【解析】
1)由旋轉(zhuǎn)可得:AC=A'C=2,進(jìn)而得到BC=,依據(jù)∠A'BC=90°,可得cos∠A'CB=,即可得到∠A'CB=30°,∠ACA'=60°;
(2)根據(jù)M為A'B'的中點(diǎn),即可得出∠A=∠A'CM,進(jìn)而得到PB=,BC=,依據(jù)tan∠Q=tan∠A=,即可得到BQ=BC×=2,進(jìn)而得出PQ=PB+BQ=;
(3)依據(jù)S四邊形PA'B′Q=S△PCQ-S△A'CB'=S△PCQ-,即可得到S四邊形PA'B′Q最小,即S△PCQ最小,而S△PCQ=PQ×BC=PQ,利用幾何法或代數(shù)法即可得到S△PCQ的最小值=3,S四邊形PA'B′Q=3-.
解:⑴由旋轉(zhuǎn)可得:,∵∴,
∵,,∴,∴,∴,∴;
⑵∵為的中點(diǎn),∴,由旋轉(zhuǎn)可得,,∴,
∴,∴,∵,
∴,
∴,∴;
⑶∵,∴最小,即最小,
∴,取的中點(diǎn),∵,∴,即,
當(dāng)最小時(shí),最小,∴,即與重合時(shí),最小,
∴,∴的最小值=3,;
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形ABCD中,按以下步驟作圖:①分別以點(diǎn)C和點(diǎn)D為圓心,大于為半徑作弧,兩弧交于點(diǎn)M,N;②作直線(xiàn)MN,且恰好經(jīng)過(guò)點(diǎn)A,與CD交于點(diǎn)E,連接BE,則下列說(shuō)法錯(cuò)誤的是( )
A.B.C.若AB=4,則D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形ABCD與線(xiàn)段AE,且AE與AB重合.現(xiàn)將線(xiàn)段AE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)180°,在旋轉(zhuǎn)過(guò)程中,若不考慮點(diǎn)E與點(diǎn)B重合的情形,點(diǎn)E還有三次落在菱形ABCD的邊上,設(shè)∠B=α,則下列結(jié)論正確的是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與軸交于,兩點(diǎn),與軸交于點(diǎn),點(diǎn)與點(diǎn)關(guān)于軸對(duì)稱(chēng).
(1)求點(diǎn),,的坐標(biāo);
(2)求直線(xiàn)的解析式;
(3)在直線(xiàn)下方的拋物線(xiàn)上是否存在一點(diǎn),使的面積最大?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校開(kāi)展“書(shū)香校園”活動(dòng)以來(lái),受到同學(xué)們的廣泛關(guān)注,學(xué)位為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書(shū)的次數(shù),并制成如下不完整的統(tǒng)計(jì)圖表.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問(wèn)題:
(1)=___________,=_____________;
(2)該調(diào)查統(tǒng)計(jì)數(shù)據(jù)的中位數(shù)是_________,眾數(shù)是__________;
(3)請(qǐng)計(jì)算扇形統(tǒng)計(jì)圖中“3次”所對(duì)應(yīng)扇形的圓心角的度數(shù);
(4)若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校學(xué)生在一周內(nèi)借閱圖書(shū)“4次及以上”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】學(xué)校開(kāi)展“書(shū)香校園”活動(dòng)以來(lái),受到同學(xué)們的廣泛關(guān)注,學(xué)校為了解全校學(xué)生課外閱讀的情況,隨機(jī)調(diào)查了部分學(xué)生在一周內(nèi)借閱圖書(shū)的次數(shù),并制成如圖不完整的統(tǒng)計(jì)表.
學(xué)生借閱圖書(shū)的次數(shù):
借閱圖書(shū)的次數(shù) | 0次 | 1次 | 2次 | 3次 | 4次以上 |
人數(shù) | 7 | 13 | 10 | 3 |
請(qǐng)你根據(jù)統(tǒng)計(jì)圖表中的信息,解答下列問(wèn)題:
(1)____________,____________;
(2)該調(diào)查統(tǒng)計(jì)數(shù)據(jù)的中位數(shù)是___________次;
(3)扇形統(tǒng)計(jì)圖中,“3次”所對(duì)應(yīng)扇形的圓心角的度數(shù)是____________;
(4)若該校共有2000名學(xué)生,根據(jù)調(diào)查結(jié)果,估計(jì)該校學(xué)生在一周內(nèi)借閱圖書(shū)“4次及以上”的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A.了解全國(guó)中學(xué)生最喜愛(ài)哪位歌手,適合全面調(diào)查.
B.甲乙兩種麥種,連續(xù)3年的平均畝產(chǎn)量相同,它們的方差為:S甲2=5,S乙2=0.5,則甲麥種產(chǎn)量比較穩(wěn).
C.某次朗讀比賽中預(yù)設(shè)半數(shù)晉級(jí),某同學(xué)想知道自己是否晉級(jí),除知道自己的成績(jī)外,還需要知道平均成績(jī).
D.一組數(shù)據(jù):3,2,5,5,4,6的眾數(shù)是5.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為2a,E為BC邊的中點(diǎn), 的圓心分別在邊AB、CD上,這兩段圓弧在正方形內(nèi)交于點(diǎn)F,則E、F間的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校八年級(jí)學(xué)生小麗、小強(qiáng)和小紅到某超市參加了社會(huì)實(shí)踐活動(dòng),在活動(dòng)中他們參與了某種水果的銷(xiāo)售工作.已知該水果的進(jìn)價(jià)為8元/千克,下面是他們?cè)诨顒?dòng)結(jié)束后的對(duì)話(huà).
小麗:如果以10元/千克的價(jià)格銷(xiāo)售,那么每天可售出300千克.
小強(qiáng):如果每千克的利潤(rùn)為3元,那么每天可售出250千克.
小紅:如果以13元/千克的價(jià)格銷(xiāo)售,那么每天可獲取利潤(rùn)750元.
【利潤(rùn)=(銷(xiāo)售價(jià)-進(jìn)價(jià))銷(xiāo)售量】
(1)請(qǐng)根據(jù)他們的對(duì)話(huà)填寫(xiě)下表:
銷(xiāo)售單價(jià)x(元/kg) | 10 | 11 | 13 |
銷(xiāo)售量y(kg) |
(2)請(qǐng)你根據(jù)表格中的信息判斷每天的銷(xiāo)售量y(千克)與銷(xiāo)售單價(jià)x(元)之間存在怎樣的函數(shù)關(guān)系.并求y(千克)與x(元)(x>0)的函數(shù)關(guān)系式;
(3)設(shè)該超市銷(xiāo)售這種水果每天獲取的利潤(rùn)為W元,求W與x的函數(shù)關(guān)系式.當(dāng)銷(xiāo)售單價(jià)為何值時(shí),每天可獲得的利潤(rùn)最大?最大利潤(rùn)是多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com