【題目】學校開展“書香校園”活動以來,受到同學們的廣泛關注,學校為了解全校學生課外閱讀的情況,隨機調(diào)查了部分學生在一周內(nèi)借閱圖書的次數(shù),并制成如圖不完整的統(tǒng)計表.
學生借閱圖書的次數(shù):
借閱圖書的次數(shù) | 0次 | 1次 | 2次 | 3次 | 4次以上 |
人數(shù) | 7 | 13 | 10 | 3 |
請你根據(jù)統(tǒng)計圖表中的信息,解答下列問題:
(1)____________,____________;
(2)該調(diào)查統(tǒng)計數(shù)據(jù)的中位數(shù)是___________次;
(3)扇形統(tǒng)計圖中,“3次”所對應扇形的圓心角的度數(shù)是____________;
(4)若該校共有2000名學生,根據(jù)調(diào)查結果,估計該校學生在一周內(nèi)借閱圖書“4次及以上”的人數(shù).
【答案】(1)17、20;(2)2;(3)72;(4)120人
【解析】
(1)先由1次的人數(shù)及其所占百分比求得總?cè)藬?shù),總?cè)藬?shù)減去其他次數(shù)的人數(shù)求得a的值,用3次的人數(shù)除以總?cè)藬?shù)求得b的值;
(2)根據(jù)中位數(shù)的定義求解;
(3)用360°乘以“3次”對應的百分比即可得;
(4)用總?cè)藬?shù)乘以樣本中“4次及以上”的人數(shù)所占比例即可得.
解:(1)被調(diào)查的總?cè)藬?shù)為人,
,,
即,
故答案為17、20.
(2)由于共有50個數(shù)煙,共中位數(shù)為第25、26個數(shù)煙的平均數(shù),
而第25、26個數(shù)煙均為2次,所以中位數(shù)為2次,
故答案為:2次.
(3)扇形統(tǒng)計圖中“3次”所對應扇形的側(cè)小角的度數(shù)為;
(4)估計該校學在一周內(nèi)借閱圖書“4次及以上”的人數(shù)為人.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=﹣x+2與反比例函數(shù)y=(k≠0)的圖象交于A(a,3),B(3,b)兩點,過點A作AC⊥x軸于點C,過點B作BD⊥x軸于點D.
(1)求a,b的值及反比例函數(shù)的解析式;
(2)若點P在直線y=﹣x+2上,且S△ACP=S△BDP,請求出此時點P的坐標;
(3)在x軸正半軸上是否存在點M,使得△MAB為等腰三角形?若存在,請直接寫出M點的坐標;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,AB∥CD,∠ABC=60°,AB=BC=4,CD=3.
(1)如圖1,求△BCD的面積;
(2)如圖2,M是CD邊上一點,將線段BM繞點B逆時針旋轉(zhuǎn)60°,可得線段BN,過點N作NQ⊥BC,垂足為Q,設NQ=n,BQ=m,求n關于m的函數(shù)解析式.(自變量m的取值范圍只需直接寫出)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC,∠B=90°,∠C=30°,O為AC上一點,OA=2,以O為圓心,以OA為半徑的圓與CB相切于點E,與AB相交于點F,連接OE、OF,則圖中陰影部分的面積是_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,,過點作直線,將繞點順時針旋轉(zhuǎn)得到(點的對應點分別為),射線分別交直線于點.
(1)如圖,當與重合時,求的度數(shù);
(2)如圖,設與的交點為,當為的中點時,求線段的長;
(3)在旋轉(zhuǎn)過程中,當點分別在的延長線上時,試探究四邊形的面積是否存在最小值.若存在,求出四邊形的最小面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在中,,過點作直線,將繞點順時針旋轉(zhuǎn)得到(點的對應點分別為).
(1)問題發(fā)現(xiàn)如圖1,若與重合時,則的度數(shù)為____________;
(2)類比探究:如圖2,設與BC的交點為,當為的中點時,求線段的長;
(3)拓展延伸在旋轉(zhuǎn)過程中,當點分別在的延長線上時,試探究四邊形的面積是否存在最小值.若存在,直接寫出四邊形的最小面積;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知將反比例函數(shù)(x<0),沿y軸翻折得到反比例函數(shù)(x>0),一次函數(shù)y=ax+b與交于A(1,m),B(4,n)兩點;
(1)求反比例函數(shù)y2和一次函數(shù)y=ax+b的解析式;
(2)連接OA,過B作BC⊥x軸,垂足為C,點P是線段AB上一點,若直線OP將四邊形OABC的面積分成1:2兩部分,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,拋物線y=﹣[(x﹣2)2+n]與x軸交于點A(m﹣2,0)和B(2m+3,0)(點A在點B的左側(cè)),與y軸交于點C,連結BC.
(1)求m、n的值;
(2)如圖2,點N為拋物線上的一動點,且位于直線BC上方,連接CN、BN.求△NBC面積的最大值;
(3)如圖3,點M、P分別為線段BC和線段OB上的動點,連接PM、PC,是否存在這樣的點P,使△PCM為等腰三角形,△PMB為直角三角形同時成立?若存在,求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】《九章算術》是我國古代數(shù)學的經(jīng)典著作,書中有一個問題:“今有黃金九枚,白銀一十一枚,稱之重適等.交易其一,金輕十三兩.問金、銀一枚各重幾何?”.意思是:甲袋中裝有黃金9枚(每枚黃金重量相同),乙袋中裝有白銀11枚(每枚白銀重量相同),稱重兩袋相等.兩袋互相交換1枚后,甲袋比乙袋輕了13兩(袋子重量忽略不計).問黃金、白銀每枚各重多少兩?設每枚黃金重x兩,每枚白銀重y兩,根據(jù)題意得( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com