【題目】在“五四青年節(jié)”來臨之際,某校舉辦了以“我的青春我做主”為主題的演講比賽. 并從參加比賽的學生中隨機抽取部分學生的演講成績進行統(tǒng)計(等級:A:優(yōu)秀,B:良好,C:一般,D:較差),并制作了如下統(tǒng)計圖表(部分信息未給出)

等級

人數(shù)

A

m

B

20

C

n

D

10

請根據(jù)統(tǒng)計圖表中的信息解答下列問題:

(1)這次共抽取了________名參加演講比賽的學生,統(tǒng)計圖中a________b________;

(2)若該校學生共有2000人,如果都參加了演講比賽,請你估計成績達到優(yōu)秀的有多少人?

(3)若演講比賽成績?yōu)?/span>A等級的學生中恰好有2名女生,其余的學生為男生,從A等級的學生中抽取兩名同學參加全市演講比賽,求抽中一名男生和一名女生的概率.

【答案】(1)5040,30;(2200;(3

【解析】

1)根據(jù)D等級的人數(shù)和對應百分比可得抽取的人數(shù),再分別求得等級B的人數(shù)所占百分比和等級C的人數(shù)所占百分比即可得出a,b的值;

2)用等級A的人數(shù)所占百分比乘以2000即可;

3)用列表法列出所有情況,再根據(jù)概率公式即可求得.

解:(150;40;30;

這次抽取的演講比賽的學生人數(shù)為10÷20%50()

等級B的學生所占百分比為20÷50×100%40%,

a40

等級C的學生所占百分比為110%20%40%30%,

b30

2)估計成績達到優(yōu)秀的人數(shù)為:2000×10%200();

3A等級的學生共有50×10%5(),其中有2名女生,那么男生有3名,列表分析如下:

1

2

1

2

3

1

12

11

12

13

2

21

21

22

23

1

11

12

12

13

2

2女/span>1

22

21

23

3

31

32

31

32

由上表可知,一共有20種等可能的結果,其中抽中一名男生和一名女生的結果有12種,

P(抽中一名男生和一名女生)

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知Pa,y1),Q1,y2)是拋物線ykx2+2k+1x+2k是不等于0的常數(shù))上的兩點.

1)求證:無論k取任何實數(shù)時,關于x的方程kx2+2k+1x+20總有實數(shù)根;

2)當k1時,

求拋物線ykx2+2k+1x+2圖象與x軸兩個交點坐標,并畫出此條拋物線的草圖;

y1y2,請結合函數(shù)圖象確定實數(shù)a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,拋物線x軸交于AB兩點,與y軸交于點D,過點A的直線交拋物線于另一點C,點E為拋物線的頂點,連接CE,AE,設AEy軸于點F,點A的坐標為,且,C、D兩點關于對稱軸對稱.

1)若,求拋物線的解析式;

2)在(1)的條件下,試探究拋物線上是否存在一點M,使為以AC為直角邊的直角三角形?若存在,求出所有符合條件的點M的坐標;若不存在,請說明理由;

3)設點P是直線AE上方拋物線上的一動點,若的面積最大值為,求a的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的是(

A.25人中至少有3人的出生月份相同

B.任意拋擲一枚均勻的1元硬幣,若上一次正面朝上,則下一次一定反面朝上

C.天氣預報說明天降雨的概率為10%,則明天一定是晴天

D.任意拋擲一枚均勻的骰子,擲出的點數(shù)小于3的概率是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】漢代數(shù)學家趙爽為了證明勾股定理,創(chuàng)制了一幅“弦圖”,后人稱其為“趙爽弦圖”.如圖是由弦圖變化得到的,它由八個全等的直角三角形拼接而成,記圖中正方形ABCD、正方形EFGH、正方形MNKT的面積分別為S1、S2S3.若S1S2S310,則S2的值為(  )

A.B.C.3D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=x2+bx+c的圖象過點B(0,1)和C(4,3)兩點,與x軸交于點D、點E,過點B和點C的直線與x軸交于點A.

(1)求二次函數(shù)的解析式;

(2)在x軸上有一動點P,隨著點P的移動,存在點P使PBC是直角三角形,請你求出點P的坐標;

(3)若動點P從A點出發(fā),在x軸上沿x軸正方向以每秒2個單位的速度運動,同時動點Q也從A點出發(fā),以每秒a個單位的速度沿射線AC運動,是否存在以A、P、Q為頂點的三角形與ABD相似?若存在,直接寫出a的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場同時購進甲、乙兩種商品共100件,其進價和售價如下表:

商品名稱

進價(/)

40

90

售價(/)

60

120

設其中甲種商品購進x件,商場售完這100件商品的總利潤為y元.

()寫出y關于x的函數(shù)關系式;

()該商場計劃最多投入8000元用于購買這兩種商品,

①至少要購進多少件甲商品?

②若銷售完這些商品,則商場可獲得的最大利潤是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于長度為4的線段AB(圖1),小若用尺規(guī)進行如下操作(圖2)根據(jù)作圖痕跡,有下列說法:①△ABC是等腰三角形;②△ABC是直角三角形;③△ABC是等邊三角形;④弧AD的長度為,⑤△ABC是直角三角形的依據(jù)是直徑所對的圓周角為直角,則其中正確的個數(shù)是( 。

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場要經營一種新上市的文具,進價為20元,試營銷階段發(fā)現(xiàn):當銷售單價是25元時,每天的銷售量為250件,銷售單價每上漲1元,每天的銷售量就減少10

1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關系式;

2)求銷售單價為多少元時,該文具每天的銷售利潤最大;

3)商場的營銷部結合上述情況,提出了AB兩種營銷方案

方案A:該文具的銷售單價高于進價且不超過30元;

方案B:每天銷售量不少于10件,且每件文具的利潤至少為25

請比較哪種方案的最大利潤更高,并說明理由

查看答案和解析>>

同步練習冊答案