【題目】閱讀下列材料:
利用完全平方公式,可以將多項(xiàng)式ax2+bx+c(a≠0)變形為a(x+m)2+n的形式,我們把這樣的變形方法叫做多項(xiàng)式ax2+bx+c的配方法.
運(yùn)用多項(xiàng)式的配方法及平方差公式能對(duì)一些多項(xiàng)式進(jìn)行分解因式.
例如:x2+11x+24=
=
=
=(x+8)(x+3)
根據(jù)以上材料,解析下列問題:
(1)用多項(xiàng)式的配方法將x2+8x﹣1化成(x+m)2+n的形式;
(2)求證:x,y取任何實(shí)數(shù)時(shí),多項(xiàng)式x2+y2﹣2x﹣4y+16的值總為正數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖中,AE⊥AB且AE=AB,BC⊥CD且BC=CD,若點(diǎn)E、B、D到直線AC的距離分別為6、3、2,則圖中實(shí)線所圍成的陰影部分面積S是( )
A.50B.44C.38D.32
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用因式分解法解下列方程:
(1)(4x﹣1)(5x+7)=0.
(2)3x(x﹣1)=2﹣2x.
(3)(2x+3)2=4(2x+3).
(4)2(x﹣3)2=x2﹣9.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正比例函數(shù)和反比例函數(shù)的圖象都經(jīng)過點(diǎn) A(3,3).
(1)求正比例函數(shù)和反比例函數(shù)的解析式;
(2)把直線 OA 向下平移后得到直線 l,與反比例函數(shù)的圖象交于點(diǎn) B(6,m),求 m 的值和直線 l 的解 析式;
(3)在(2)中的直線 l 與 x 軸、y 軸分別交于 C、D,求四邊形 OABC 的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市銷售一種商品,成本每千克30元,規(guī)定每千克售價(jià)不低于成本,且不高于70元,經(jīng)市場(chǎng)調(diào)查,每天的銷售量y(千克)與每千克售價(jià)x(元)滿足一次函數(shù)關(guān)系,部分?jǐn)?shù)據(jù)如下表:
售價(jià)x(元/千克) | 40 | 50 | 60 |
銷售量y(千克) | 100 | 80 | 60 |
(1)求y與x之間的函數(shù)表達(dá)式;
(2)設(shè)商品每天的總利潤(rùn)為W(元),求W與x之間的函數(shù)表達(dá)式(利潤(rùn)=收入成本);
(3)試說明(2)中總利潤(rùn)W隨售價(jià)x的變化而變化的情況,并指出售價(jià)為多少元時(shí)獲得最大利潤(rùn),最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是正方形,點(diǎn)E是邊BC的中點(diǎn),∠AEF=90°,且EF交正方形外角平分線CF于點(diǎn)F.請(qǐng)你認(rèn)真閱讀下面關(guān)于這個(gè)圖的探究片段,完成所提出的問題.
(1)探究1:小強(qiáng)看到圖(*)后,很快發(fā)現(xiàn)AE=EF,這需要證明AE和EF所在的兩個(gè)三角形全等,但△ABE和△ECF顯然不全等(一個(gè)是直角三角形,一個(gè)是鈍角三角形),考慮到點(diǎn)E是邊BC的中點(diǎn),因此可以選取AB的中點(diǎn)M,連接EM后嘗試著去證△AEM≌EFC就行了,隨即小強(qiáng)寫出了如下的證明過程:
證明:如圖1,取AB的中點(diǎn)M,連接EM.
∵∠AEF=90°
∴∠FEC+∠AEB=90°
又∵∠EAM+∠AEB=90°
∴∠EAM=∠FEC
∵點(diǎn)E,M分別為正方形的邊BC和AB的中點(diǎn)
∴AM=EC
又可知△BME是等腰直角三角形
∴∠AME=135°
又∵CF是正方形外角的平分線
∴∠ECF=135°
∴△AEM≌△EFC(ASA)
∴AE=EF
(2)探究2:小強(qiáng)繼續(xù)探索,如圖2,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC上的任意一點(diǎn)”,其余條件不變,發(fā)現(xiàn)AE=EF仍然成立,請(qǐng)你證明這一結(jié)論.
(3)探究3:小強(qiáng)進(jìn)一步還想試試,如圖3,若把條件“點(diǎn)E是邊BC的中點(diǎn)”改為“點(diǎn)E是邊BC延長(zhǎng)線上的一點(diǎn)”,其余條件仍不變,那么結(jié)論AE=EF是否成立呢?若成立請(qǐng)你完成證明過程給小強(qiáng)看,若不成立請(qǐng)你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)不透明的口袋中裝有4個(gè)完全相同的小球,分別標(biāo)有數(shù)字1、2、3、4,另有一個(gè)可以自由旋轉(zhuǎn)的圓盤.被分成面積相等的3個(gè)扇形區(qū),分別標(biāo)有數(shù)字1、2、3(如圖所示).小穎和小亮想通過游戲來決定誰代表學(xué)校參加歌詠比賽,游戲規(guī)則為:一人從口袋中摸出一個(gè)小球,另一個(gè)人轉(zhuǎn)動(dòng)圓盤,如果所摸球上的數(shù)字與圓盤上轉(zhuǎn)出數(shù)字之和小于4,那么小穎去;否則小亮去.
(1)用樹狀圖或列表法求出小穎參加比賽的概率;
(2)你認(rèn)為該游戲公平嗎?請(qǐng)說明理由;若不公平,請(qǐng)修改該游戲規(guī)則,使游戲公平.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下表是小華同學(xué)一個(gè)學(xué)期數(shù)學(xué)成績(jī)的記錄.根據(jù)表格提供的信息,回答下列的問題:
考試類別 | 平時(shí)考試 | 期中考試 | 期末考試 | |||
第一單元 | 第二單元 | 第三單元 | 第四單元 | |||
成績(jī)(分) | 85 | 78 | 90 | 91 | 90 | 94 |
(1)小明6次成績(jī)的眾數(shù)是 ,中位數(shù)是 ;
(2)求該同學(xué)這個(gè)同學(xué)這一學(xué)期平時(shí)成績(jī)的平均數(shù);
(3)總評(píng)成績(jī)權(quán)重規(guī)定如下:平時(shí)成績(jī)占20%,期中成績(jī)占30%,期末成績(jī)占50%,請(qǐng)計(jì)算出小華同學(xué)這一個(gè)學(xué)期的總評(píng)成績(jī)是多少分?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀理解:在以后你的學(xué)習(xí)中,我們會(huì)學(xué)習(xí)一個(gè)定理:直角三角形斜邊上的中線等于斜邊的一半,即:如圖1,在Rt△ABC中,∠ACB=90°,若點(diǎn)D是斜邊AB的中點(diǎn),則CD=AB.
靈活應(yīng)用:如圖2,△ABC中,∠BAC=90°,AB=6,AC=8,點(diǎn)D是BC的中點(diǎn),連接AD,將△ACD沿AD翻折得到△AED,連接BE,CE.
(1)填空:AD= ;
(2)求證:∠BEC=90°;
(3)求BE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com