【題目】如圖,△ABC為等邊三角形,點D,E分別在AC,BC上,且AD=CE,AE與BD相交于點P,BF⊥AE于點F.若PF=3,則BP=(   )

A. 6 B. 5 C. 4 D. 3

【答案】A

【解析】

首先證明△BAD≌△ACE,從而可得到∠CAE=∠ABD,然后依據(jù)三角形的外角的性質可得到∠BPF=60°,最后在Rt△BPF中,依據(jù)含30°角的直角三角的性質求解即可.

解:∵△ABC為等邊三角形,

AB=AC,∠BAD=∠ACE=60°.

在△BAD和△ACE

∴△BAD≌△ACE

∴∠CAE=∠ABD

∴∠BPF=∠ABP+∠BAP=∠BAP+∠EAC=∠BAC=60°.

∴在Rt△BPF中,∠PBF=90°-60°=30°.

BP=2PF=6.

故選:A.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1:y=-2x與直線l2:y=kx+b在同一平面直角坐標系內交于點P .

(1)直接寫出不等式-2x>kx+b 的解集

(2)設直線l2 x 軸交于點A ,OAP的面積為12 ,求l2的表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,如圖,B、C 兩點把線段 AD 分成 253 三部分,M AD 的中點,BM=6cm,則 AD 的長為( )

A. 21cm B. 20cm C. 19cm D. 18cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,O為直線AB上一點,∠AOC=50°,OD平分∠AOC,DOE=90°.

(1)請你數(shù)一數(shù),圖中有多少個小于平角的角;

(2)求出∠BOD的度數(shù);

(3)請通過計算說明OE是否平分∠BOC.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下表是某水站記錄的潮汛期某河一周內的水位變化情況正號表示水位比前一天上升,負號表示水位比前一天下降,上周的水位恰好達到警戒水位,單位:米)

(1)本周哪一天河流的水位最高,哪一天河流的水位最低,它們位于警戒水位之上還是之下,與警戒水位的距離分別是多少?

(2)與上周末相比,本周末河流的水位是上升還是下降了?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算下列各題:(1)_______;(2)________;

(3)_______;(4)_______;

(5)________;(6)________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四邊形ABDC中,AC=AB,DC=DB,∠CAB=60°,∠CDB=120°,E是AC上一點,F(xiàn)是AB延長線上一點,且CE=BF.

(1)試說明:DE=DF;

(2)在圖中,若G在AB上且∠EDG=60°,試猜想CE、EG、BG之間的數(shù)量關系并證明所歸納結論;

(3)若題中條件“∠CAB=60°,∠CDB=120°”改為∠CAB=α,∠CDB=180°-α,G在AB上,∠EDG滿足什么條件時,(2)中結論仍然成立?(只寫結果不要證明).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB=AD,那么添加下列一個條件后,仍無法判定ABC≌△ADC的是( 。

A. CB=CD B. BAC=DAC C. BCA=DCA D. B=D=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2﹣2x+m﹣1=0有兩個實數(shù)根x1 , x2
(1)求m的取值范圍;
(2)當x12+x22=6x1x2時,求m的值.

查看答案和解析>>

同步練習冊答案