【題目】我們約定,在平面直角坐標(biāo)系中兩條拋物線有且只有一個(gè)交點(diǎn)時(shí),我們稱這兩條拋物線為“郡園牽手拋物線”,這個(gè)交點(diǎn)為“郡園點(diǎn)”.例如:拋物線與是“郡園牽手拋物線”,“郡園點(diǎn)”為.
(1)如圖,若拋物線與為“郡園牽手拋物線”,求的值;
(2)在(1)的條件下,若點(diǎn)是第一象限內(nèi)拋物線上的動點(diǎn),過作軸,為垂足,求的最大值;
(3)在(1)的條件下,設(shè)點(diǎn)是拋物線與的“郡園點(diǎn)”,點(diǎn)是拋物線上一動點(diǎn),問在拋物線的對稱軸上是否存在點(diǎn),使是以點(diǎn)為直角頂點(diǎn)的等腰直角三角形?若存在,請直接寫出點(diǎn)的坐標(biāo);若不存在,請說明理由.
【答案】(1)或4;(2);(3)存在,符合條件的點(diǎn)有4個(gè),.
【解析】
(1)根據(jù)題意得知與為“郡園牽手拋物線”,即只有一個(gè)交點(diǎn),聯(lián)立解析式解方程組即可得到答案; (2)由M是第一象限內(nèi)的點(diǎn)可判斷的解析式,設(shè)出用M的坐標(biāo),用M的坐標(biāo)變量表示出,利用二次函數(shù)的性質(zhì)求最大值即可 ; (3)根據(jù)題意畫圖并求出點(diǎn)B坐標(biāo)為(-2,2),當(dāng)拋物線分兩種情況時(shí)依題意構(gòu)造以C為直角頂點(diǎn)的等腰直角三角形,判斷其大致圖象,然后根據(jù)割補(bǔ)法構(gòu)造全等三角形,再用待定系數(shù)法設(shè)出關(guān)鍵點(diǎn)的坐標(biāo),并表示出全等三角形邊的長度,用對應(yīng)邊相等建立方程組求解即可.
解:(1)由可得:
,
∵只有一個(gè)交點(diǎn),∴,
∴或4.
(2)∵點(diǎn)是第一象限內(nèi)拋物線上的動點(diǎn),∴,
設(shè),其中,
則,
當(dāng)時(shí),有最大值,且最大值為.
(3)存在. 理由如下:
∵B是拋物線與的“郡園點(diǎn)”.
∴ 解得,,
把代入得,,
所以B點(diǎn)坐標(biāo)為.
如圖1,
當(dāng)拋物線 圖象為時(shí),
過B、D分別作BP、DQ垂直于拋物線對稱軸直線,
依題意可設(shè),且由圖可得.
∵△BCD為等腰直角三角形,且C為直角頂點(diǎn) ,
又∵∠CBP+∠BCP=90° ∴∠BCP+∠DCQ=90°,
在△BCP與△DCQ中,
∴△BCP≌△DCQ(AAS) ∴BP=CQ,PC=DQ
即
所以由得,代入得,,
整理得, , 解得,(舍去),
此時(shí)C點(diǎn)坐標(biāo)為.
如圖2,
當(dāng)拋物線圖象為時(shí),
過B、D分別作BG、DF分別平行于拋物線的對稱軸直線,且過C作平行于軸的直線交BG于點(diǎn)G,交DF于點(diǎn)F.
依題意可設(shè),且由圖可得.
同理可證△BCG≌△CDF(AAS),所以CG=FD,BG=CF
即 解得,(舍去),
此時(shí)C點(diǎn)坐標(biāo)為.
如圖3,
當(dāng)拋物線圖象為時(shí),由△BCD是以C為直角頂點(diǎn)的等腰直角三角形可得BC=CD=2,此時(shí)D點(diǎn)與坐標(biāo)原點(diǎn)O重合,C點(diǎn)坐標(biāo)為.
如圖4,
當(dāng)拋物線圖象為時(shí),過B、D分別作BM、DN垂直于y軸交y軸于點(diǎn)M、N.由圖可設(shè).
同理易證△BCM≌△DCN(AAS) ∴BM=CN,MC=DN
即 由得并代入得,
整理得,,
解得, ,
又∵當(dāng) 時(shí),過點(diǎn)C且垂直于BC的直線與拋物線沒有交點(diǎn),故此時(shí)D點(diǎn)不存在. ∴此時(shí)C點(diǎn)坐標(biāo)為.
綜上所述,滿足題意的C點(diǎn)坐標(biāo)可以為,,,.
所以存在,符合條件的點(diǎn)有4個(gè),,,,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,二次函數(shù)y=x2+2x﹣3的圖象如圖所示,點(diǎn)A(x1,y1),B(x2,y2)是該二次函數(shù)圖象上的兩點(diǎn),其中﹣3≤x1<x2≤0,則下列結(jié)論正確的是( )
A. y1<y2B.y1>y2C.y的最小值是﹣3 D.y的最小值是﹣4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】港珠澳大橋是世界上最長的跨海大橋.如圖是港珠澳大橋的海豚塔部分效果圖,為了測得海豚塔斜拉索頂端A距離海平面的高度,先測出斜拉索底端C到橋塔的距離(CD的長)約為100米,又在C點(diǎn)測得A點(diǎn)的仰角為30°,測得B點(diǎn)的俯角為20°,求斜拉索頂端A點(diǎn)到海平面B點(diǎn)的距離(AB的長).(已知≈1.732,tan20°≈0.36,結(jié)果精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對于某一函數(shù)給出如下定義:對于任意實(shí)數(shù),當(dāng)自變量時(shí),函數(shù)關(guān)于的函數(shù)圖象為,將沿直線翻折后得到的函數(shù)圖象為,函數(shù)的圖象由和兩部分共同組成,則函數(shù)為原函數(shù)的“對折函數(shù)”,如函數(shù)()的對折函數(shù)為.
(1)求函數(shù)()的對折函數(shù);
(2)若點(diǎn)在函數(shù)()的對折函數(shù)的圖象上,求的值;
(3)當(dāng)函數(shù)()的對折函數(shù)與軸有不同的交點(diǎn)個(gè)數(shù)時(shí),直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙O的半徑為1,點(diǎn)A在x軸的正半軸上,B為⊙O上一點(diǎn),過點(diǎn)A、B的直線與y軸交于點(diǎn)C,且OA2=ABAC.
(1)求證:直線AB是⊙O的切線;
(2)若AB=,求直線AB對應(yīng)的函數(shù)表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,分別以點(diǎn)A、C為圓心,以大于AC的長為半徑畫弧,兩弧相交于點(diǎn)D和E,作直線DE交AB于點(diǎn)F,交AC于點(diǎn)G,連接CF,以點(diǎn)C為圓心,以CF的長為半徑畫弧,交AC于點(diǎn)H.若∠A=30°,BC=2,則AH的長是( )
A. B. 2C. +1D. 2﹣2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣1(a≠0)交x軸于A,B(1,0)兩點(diǎn),交y軸于點(diǎn)C,一次函數(shù)y=x+3的圖象交坐標(biāo)軸于A,D兩點(diǎn),E為直線AD上一點(diǎn),作EF⊥x軸,交拋物線于點(diǎn)F
(1)求拋物線的解析式;
(2)若點(diǎn)F位于直線AD的下方,請問線段EF是否有最大值?若有,求出最大值并求出點(diǎn)E的坐標(biāo);若沒有,請說明理由;
(3)在平面直角坐標(biāo)系內(nèi)存在點(diǎn)G,使得G,E,D,C為頂點(diǎn)的四邊形為菱形,請直接寫出點(diǎn)G的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以點(diǎn)A為中心,把△ABC逆時(shí)針旋轉(zhuǎn)120°,得到△AB'C′(點(diǎn)B、C的對應(yīng)點(diǎn)分別為點(diǎn)B′、C′),連接BB',若AC'∥BB',則∠CAB'的度數(shù)為( 。
A.45°B.60°C.70°D.90°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,E為BC邊上的一點(diǎn).連結(jié)AE.
(1)若AB=AE, 求證:∠DAE=∠D;
(2)若點(diǎn)E為BC的中點(diǎn),連接BD,交AE于F,求EF︰FA的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com