【題目】矩形ABCD中,BC=3,AB=8,E、F為AB、CD邊上的中點,如圖1,A在原點處,點B在y軸正半軸上,點C在第一象限,若點A從原點出發(fā),沿x軸向右以每秒1個單位長度的速度運動,則點B隨之沿y軸下滑,并帶動矩形ABCD在平面上滑動,如圖2,設運動時間表示為t秒,當B到達原點時停止運動.

(1)當t=0時,求點F的坐標及FA的長度;
(2)當t=4時,求OE的長及∠BAO的大;
(3)求從t=0到t=4這一時段點E運動路線的長;
(4)當以點F為圓心,F(xiàn)A為半徑的圓與坐標軸相切時,求t的值.

【答案】
(1)解:當t=0時,

∵AB=CD=8,F(xiàn)為CD中點,

∴DF=4,

∴F(3,4),

∴AF=5


(2)解:當t=4時,OA=4,

在Rt△ABO中,AB=8,∠AOB=90°,點E是AB的中點,

∴∠ABO=30°,OE=4,

∴∠BAO=60°


(3)解:從t=0到t=4這一時段,點E運動路線是以O為圓心,OE為半徑圓心角是30°的一段弧,

(其中OE=OE1=4,∠E1OE=90°﹣60°=30°,)

∴點E運動路線的長為 = π;


(4)解:在Rt△ADF中,F(xiàn)D2+AD2=AF2

∴AF= =5,

①設AO=t1時,⊙F與x軸相切,點A為切點,

∴FA⊥OA,

∴∠OAB+∠FAB=90°,

∵∠FAD+∠FAB=90°,

∴∠BAO=∠FAD,

∵∠BOA=∠D=90°,

∴Rt△FAE∽Rt△ABO,

,

,

∴t1=

②設AO=t2時,⊙F與y軸相切,B為切點,同理可得,t2= ,

綜上所述,當以點F為圓心,F(xiàn)A為半徑的圓與坐標軸相切時,t的值為


【解析】(1)F為CD邊上的中點,求出DF得長,進而得出點F的坐標即可得出AF。
(2)利用直角三角形的性質(zhì),直角三角形斜邊上的中線等于斜邊的一半,證得△AOE是等邊三角形,即可得出結(jié)論。
(3)先判斷出點E運動的路線是一條弧,利用弧長公式即可得出結(jié)論;
(4)分兩種情況:①設AO=t1時,⊙F與x軸相切,點A為切點;②設AO=t2時,⊙F與y軸相切,B為切點,利用相似三角形的性質(zhì)建立方程求解即可.

【考點精析】解答此題的關(guān)鍵在于理解直角三角形斜邊上的中線的相關(guān)知識,掌握直角三角形斜邊上的中線等于斜邊的一半,以及對勾股定理的概念的理解,了解直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】已知,在平面直角坐標系中,Aa,0)、B0b),ab滿足 +|a3 |=0CAB的中點,P是線段AB上一動點,Dx軸正半軸上一點,且PO=PD,DEABE

1)求OAB的度數(shù);

2)設AB=6,當點P運動時,PE的值是否變化?若變化,說明理由;若不變,請求PE的值;

(3)設AB=6,若OPD=45°,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC的兩條高ADBE交于點F,∠ABC45°,∠BAC60°

1)求證:DFDC

2)連接CF,求證:ABAC+CF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,已知AD∥BC,AB⊥BC,點E,F(xiàn)在邊AB上,且∠AED=45°,∠BFC=60°,AE=2,EF=2﹣ ,F(xiàn)C=2

(1)BC= ;
(2)求點D到BC的距離;
(3)求DC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】2016年國際馬拉松賽于承德市舉辦,起點承德市獅子園,賽道為外環(huán)路,終點為奧體中心(賽道基本為直線).在賽道上有A,B兩個服務點,現(xiàn)有甲,乙兩個服務人員,分別從A,B兩個服務點同時出發(fā),沿直線勻速跑向終點C(奧體中心),如圖1所示,設甲、乙兩人出發(fā)xh后,與B點的距離分別為ykm、ykm,y、y與x的函數(shù)關(guān)系如圖2所示.

(1)從服務點A到終點C的距離為km,a=h;
(2)求甲乙相遇時x的值;
(3)甲乙兩人之間的距離應不超過1km時,稱為最佳服務距離,從甲、乙相遇到甲到達終點以前,保持最佳服務距離的時間有多長?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙、丙三位同學分別正確指出了某一個函數(shù)的一個性質(zhì).甲:函數(shù)圖象經(jīng)過第一象限;乙:函數(shù)圖象經(jīng)過第三象限;丙:每第一個象限內(nèi),y值隨x值的增大而減。鶕(jù)他們的描述,這個函數(shù)表達式可能是( )
A.y=2x
B.y=
C.y=﹣
D.y=2x2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,O為坐標原點,A(1,3),B(2,1),直角坐標系中存在點C,使得O,A,B,C四點構(gòu)成平行四邊形,C點的坐標為______________________________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=5,AB=3.

(1)利用尺規(guī)在AC上找到一點D,使得DA=DC(保留作圖痕跡,不寫作法).
(2)連接DB,若DA=DC=DB,試判斷△ABC的形狀,說明理由,并求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠C90°,O為△ABC的三條角平分線的交點,ODBCOEAC,OFAB,點D、EF分別是垂足,且AB10cm,BC8cmCA6cm,則點O到邊AB的距離為(  )

A. 2cmB. 3cmC. 4cmD. 5cm

查看答案和解析>>

同步練習冊答案