【題目】已知,在平面直角坐標(biāo)系中,A(a,0)、B(0,b),a、b滿足 +|a3 |=0.C為AB的中點(diǎn),P是線段AB上一動(dòng)點(diǎn),D是x軸正半軸上一點(diǎn),且PO=PD,DE⊥AB于E.
(1)求∠OAB的度數(shù);
(2)設(shè)AB=6,當(dāng)點(diǎn)P運(yùn)動(dòng)時(shí),PE的值是否變化?若變化,說明理由;若不變,請(qǐng)求PE的值;
(3)設(shè)AB=6,若∠OPD=45°,求點(diǎn)D的坐標(biāo).
【答案】(1) 45°;(2)PE的值不變,PE=3;(3)D(6,0).
【解析】
試題(1)根據(jù)非負(fù)數(shù)的性質(zhì)即可求得a,b的值,從而得到△AOB是等腰直角三角形,據(jù)此即可求得;
(2)根據(jù)等腰三角形的性質(zhì)以及三角形的外角的性質(zhì)可以得到∠POC=∠DPE,即可證得△POC≌△DPE,則OC=PE,OC的長(zhǎng)度根據(jù)等腰直角三角形的性質(zhì)可以求得;
(3)利用等腰三角形的性質(zhì),以及外角的性質(zhì)證得∠POC=∠DPE,即可證得△POC≌△DPE,根據(jù)全等三角形的對(duì)應(yīng)邊相等,即可求得OD的長(zhǎng),從而求得D的坐標(biāo).
試題解析:(1)根據(jù)題意得:
,
解得:a=b=,
∴OA=OB,
又∵∠AOB=90°
∴△AOB為等腰直角三角形,
∴∠OAB=45°.
(2)PE的值不變.理由如下:
∵△AOB為等腰直角三角形,且AC=BC,
∴∠AOC=∠BOC=45°
又∵OC⊥AB于C,
∵PO=PD
∴∠POD=∠PDO
又∵∠POD=45°+∠POC∠PDO=45°+∠DPE,
∴∠POC=∠DPE
在△POC和△DPE中,
∴△POC≌△DPE,
∴OC=PE
又OC=AB=3
∴PE=3;
(3)∵OP=PD,
∴∠POD=∠PDO=,
則∠PDA=180°-∠PDO=180°-67.5°=112.5°,
∵∠POD=∠A+∠APD,
∴∠APD=67.5°-45°=22.5°,
∴∠BPO=180°-∠OPD-∠APD=112.5°,
∴∠PDA=∠BPO
則在△POB和△DPA中,
,
∴△POB≌△DPA.
∴PA=OA=,
∴DA=PB=6-,
∴OD=OA-DA=-(6-)=-6
∴D(6,0).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,正方形ABCD的位置如圖所示,點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)D的坐標(biāo)為(0,3).延長(zhǎng)CB交x軸于點(diǎn)A1 , 作正方形A1B1C1C;延長(zhǎng)C1B1交x軸于點(diǎn)A2 , 作正方形A2B2C2C1…,按這樣的規(guī)律進(jìn)行下去,第4個(gè)正方形的邊長(zhǎng)為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,兩條長(zhǎng)度均為2的線段和線段互相重合,將沿直線向左平移個(gè)單位長(zhǎng)度,將沿直線向右也平移個(gè)單位長(zhǎng)度,當(dāng)、是線段的三等分點(diǎn)時(shí),則的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AB∥CD,AE平分∠CAB,AE與CD相交于點(diǎn)E,∠ACD=40°,則∠DEA=( )
A.40°
B.110°
C.70°
D.140°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,和的平分線相交于點(diǎn)O,過O點(diǎn)作交AB于點(diǎn)E,交AC于點(diǎn)F,過點(diǎn)O作于D,下列四個(gè)結(jié)論.
點(diǎn)O到各邊的距離相等設(shè),,則,正確的結(jié)論有 個(gè).
A. 1個(gè)B. 2個(gè)C. 3個(gè)D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一艘輪船位于燈塔P的北偏東60°方向,與燈塔P的距離為30海里的A處,輪船沿正南方向航行一段時(shí)間后,到達(dá)位于燈塔P的南偏東30°方向上的B處,則此時(shí)輪船所在位置B處與燈塔P之間的距離為( )
A.60海里
B.45海里
C.20 海里
D.30 海里
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:如圖,在直角坐標(biāo)系中,有菱形OABC,A點(diǎn)的坐標(biāo)為(10,0),對(duì)角線OB、AC相交于D點(diǎn),雙曲線y= (x>0)經(jīng)過D點(diǎn),交BC的延長(zhǎng)線于E點(diǎn),且OBAC=160,有下列四個(gè)結(jié)論:
①雙曲線的解析式為y= (x>0);②E點(diǎn)的坐標(biāo)是(5,8);③sin∠COA= ;④AC+OB=12 .其中正確的結(jié)論有( )
A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c交x軸于點(diǎn)A(﹣3,0)和點(diǎn)B,交y軸于點(diǎn)C(0,3).
(1)求拋物線的函數(shù)表達(dá)式;
(2)若點(diǎn)P在拋物線上,且S△AOP=4S△BOC , 求點(diǎn)P的坐標(biāo);
(3)如圖b,設(shè)點(diǎn)Q是線段AC上的一動(dòng)點(diǎn),作DQ⊥x軸,交拋物線于點(diǎn)D,求線段DQ長(zhǎng)度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】矩形ABCD中,BC=3,AB=8,E、F為AB、CD邊上的中點(diǎn),如圖1,A在原點(diǎn)處,點(diǎn)B在y軸正半軸上,點(diǎn)C在第一象限,若點(diǎn)A從原點(diǎn)出發(fā),沿x軸向右以每秒1個(gè)單位長(zhǎng)度的速度運(yùn)動(dòng),則點(diǎn)B隨之沿y軸下滑,并帶動(dòng)矩形ABCD在平面上滑動(dòng),如圖2,設(shè)運(yùn)動(dòng)時(shí)間表示為t秒,當(dāng)B到達(dá)原點(diǎn)時(shí)停止運(yùn)動(dòng).
(1)當(dāng)t=0時(shí),求點(diǎn)F的坐標(biāo)及FA的長(zhǎng)度;
(2)當(dāng)t=4時(shí),求OE的長(zhǎng)及∠BAO的大;
(3)求從t=0到t=4這一時(shí)段點(diǎn)E運(yùn)動(dòng)路線的長(zhǎng);
(4)當(dāng)以點(diǎn)F為圓心,F(xiàn)A為半徑的圓與坐標(biāo)軸相切時(shí),求t的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com