【題目】(問(wèn)題提出)

求證:如果一個(gè)定圓的內(nèi)接四邊形對(duì)角線互相垂直,那么這個(gè)四邊形每組對(duì)邊的平方和是一個(gè)定值.

(從特殊入手)

我們不妨設(shè)定圓O的半徑是R,O的內(nèi)接四邊形ABCD中,ACBD.請(qǐng)你在圖①中補(bǔ)全特殊位置時(shí)的圖形,并借助于所畫圖形探究問(wèn)題的結(jié)論.

(問(wèn)題解決)

已知:如圖②,定圓⊙O的半徑是R,四邊形ABCD是⊙O的內(nèi)接四邊形, ACBD.

求證:

證明:

【答案】【從特殊入手】證明見解析;【問(wèn)題解決】AB2+CD2=BC2+AD2=4R2;證明見解析.

【解析】

【從特殊入手】:根據(jù)正方形的性質(zhì)、勾股定理計(jì)算;
【問(wèn)題解決】:根據(jù)題意寫出已知、求證,作直徑DE,連接CE,根據(jù)圓周角定理證明∠ADB=CDE,得到AB=CE,根據(jù)勾股定理計(jì)算.

【從特殊入手】

解:如果一個(gè)定圓的內(nèi)接四邊形對(duì)角線互相垂直,

那么這個(gè)四邊形的對(duì)邊平方和是定圓半徑平方的4倍.

情況一: 如圖1,當(dāng)AC、BD是兩條互相垂直的直徑時(shí).

AB2=OA2+ OB2=R2+R2=2R2,

CD2=OC2+ OD2=R2+R2=2R2,

BC2=OC2+ OB2=R2+R2=2R2,

AD2=OA2+ OD2=R2+R2=2R2

所以AB2+CD2=BC2+AD2=2R2+2R2=4R2

情況二: 如圖2,當(dāng)ACBD,且AC直徑時(shí).

根據(jù)垂徑定理可知:AB=AD,BC=DC.

因?yàn)?/span>AC是直徑,所以∠ABC=ADC=90°.

所以AB2+CD2=AD2+CD2=AC2=4R2

【問(wèn)題解決】

求證:AB2+CD2=BC2+AD2=4R2

證明:如圖3.作直徑DE,連接CE.

DE是直徑,∴∠DCE=90°.

所對(duì)的圓周角是∠E與∠DAH,

∴∠E=DAH.

∵∠DAC+ADB=90°,E+CDE=90°,

∴∠ADB=CDE.

AB=CE.

AB2+CD2=CE2+CD2=DE2=4R2

同理:BC2+AD2=4R2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,RtABC,ACB=90°,在以AB的中點(diǎn)O為坐標(biāo)原點(diǎn),AB所在直線為x軸建立的平面直角坐標(biāo)系中,ABC繞點(diǎn)B順時(shí)針旋轉(zhuǎn),使點(diǎn)A旋轉(zhuǎn)至y軸的正半軸上的A,AO=OB=2,則陰影部分面積為( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB⊙O的直徑,點(diǎn)C,D⊙O上,且點(diǎn)C的中點(diǎn),過(guò)點(diǎn) CAD的垂線 EF交直線 AD于點(diǎn) E

1)求證:EF⊙O的切線;

2)連接BC,若AB=5,BC=3,求線段AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】八(2)班組織了一次經(jīng)典誦讀比賽,甲、乙兩隊(duì)各10人的比賽成績(jī)?nèi)缦卤?10分制):

7

8

9

7

10

10

9

10

10

10

10

8

7

9

8

10

10

9

10

9

(1)甲隊(duì)成績(jī)的中位數(shù)是 分,乙隊(duì)成績(jī)的眾數(shù)是 分;

(2)計(jì)算乙隊(duì)的平均成績(jī)和方差;

(3)已知甲隊(duì)成績(jī)的方差是1.4,則成績(jī)較為整齊的是 隊(duì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象過(guò)點(diǎn)A(4,1)與正比例函數(shù)()的圖象相交于點(diǎn)B(,3),與軸相交于點(diǎn)C.

1)求一次函數(shù)和正比例函數(shù)的表達(dá)式;

2)若點(diǎn)D是點(diǎn)C關(guān)于軸的對(duì)稱點(diǎn),且過(guò)點(diǎn)D的直線DEACBOE,求點(diǎn)E的坐標(biāo);

3)在坐標(biāo)軸上是否存在一點(diǎn),使.若存在請(qǐng)求出點(diǎn)的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明和小亮為下周日計(jì)劃了三項(xiàng)活動(dòng),分別是看電影(記為A)、去郊游(記為B)、去圖書館(記為C).他們各自在這三項(xiàng)活動(dòng)中任選一個(gè),每項(xiàng)活動(dòng)被選中的可能性相同.

(1)小明選擇去郊游的概率為多少

(2)請(qǐng)用樹狀圖或列表法求小明和小亮的選擇結(jié)果相同的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,ABC中,AB=AC=6,BC=4,點(diǎn)D、E分別在邊AB、AC上,且AD=AE=1,連接DE、CD,點(diǎn)M、N、P分別是線段DE、BC、CD的中點(diǎn),連接MP、PN、MN.

(1)求證:PMN是等腰三角形;

(2)將ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn),

如圖2,當(dāng)點(diǎn)D、E分別在邊AC兩側(cè)時(shí),求證:PMN是等腰三角形;

當(dāng)ADE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到第一次點(diǎn)D、E、C在一條直線上時(shí),請(qǐng)直接寫出此時(shí)BD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】兩個(gè)一次函數(shù)l1、l2的圖象如圖:

(1)分別求出l1l2兩條直線的函數(shù)關(guān)系式;

(2)求出兩直線與y軸圍成的ABP的面積;

(3)觀察圖象:請(qǐng)直接寫出當(dāng)x滿足什么條件時(shí),l1的圖象在l2的下方.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,過(guò)點(diǎn)C的直線MNAB,DAB邊上一點(diǎn),過(guò)點(diǎn)DDEBC,交直線MNE,垂足為F,連接CDBE

(1)求證:CEAD;

(2)當(dāng)DAB中點(diǎn)時(shí).

①求證:四邊形BECD是菱形;
②當(dāng)∠A為多少度時(shí),四邊形BECD是正方形?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案