【題目】如圖,平行四邊形ABCD的邊OA在x軸上,將平行四邊形沿對(duì)角線AC對(duì)折,AO的對(duì)應(yīng)線段為AD,且點(diǎn)D,C,O在同一條直線上,AD與BC交于點(diǎn)E.
(1)求證:△ABC≌△CDA.
(2)若直線AB的函數(shù)表達(dá)式為,求三角線ACE的面積.
【答案】(1)證明見(jiàn)詳解;(2)
【解析】
(1)利用平行四邊形的性質(zhì)及折疊的性質(zhì),可得出CD=AB,∠DCA=∠BAC,結(jié)合AC=CA可證出△ABC≌△CDA(SAS);
(2)由點(diǎn)D,C,O在同一直線上可得出∠DCA=∠OCA=90°,利用一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征可得出點(diǎn)A的坐標(biāo)及OA的長(zhǎng)度,由OC∥AB可得出直線OC的解析式為y=x,進(jìn)而可得出∠COA=45°,結(jié)合∠OCA=90°可得出△AOC為等腰直角三角形,利用等腰直角三角形的性質(zhì)可得出OC、AC的長(zhǎng),結(jié)合(1)的結(jié)論可得出四邊形ABDC為正方形,再利用正方形的面積公式結(jié)合S△ACE=S正方形ABDC可求出△ACE的面積.
(1)證明:∵四邊形ABCO為平行四邊形,
∴AB=CO,AB∥OC,
∴∠BAC=∠OCA.
由折疊可知:CD=CO,∠DCA=∠OCA,
∴CD=AB,∠DCA=∠BAC.
在△ABC和△CDA中,
,
∴△ABC≌△CDA(SAS).
(2)解:∵∠DCA=∠OCA,點(diǎn)D,C,O在同一直線上,
∴∠DCA=∠OCA=90°.
當(dāng)y=0時(shí),x-6=0,解得:x=6,
∴點(diǎn)A的坐標(biāo)為(6,0),OA=6.
∵OC∥AB,
∴直線OC的解析式為y=x,
∴∠COA=45°,
∴△AOC為等腰直角三角形,
∴AC=OC=.
∵AB∥CD,AB=CD=AC,∠DCA=90°,
∴四邊形ABDC為正方形,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】足球運(yùn)動(dòng)員將足球沿與地面成一定角度的方向踢出,足球飛行的路線是一條拋物線,不考慮空氣阻力,足球距離地面的高度(單位:)與足球被踢出后經(jīng)過(guò)的時(shí)間(單位:)之間的關(guān)系如下表:
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | … | |
0 | 8 | 14 | 18 | 20 | 20 | 18 | 14 | … |
下列結(jié)論:①足球距離地面的最大高度為;②足球飛行路線的對(duì)稱(chēng)軸是直線;③足球被踢出時(shí)落地;④足球被踢出時(shí),距離地面的高度是.
其中正確結(jié)論的個(gè)數(shù)是( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】樹(shù)葉有關(guān)的問(wèn)題
如圖,一片樹(shù)葉的長(zhǎng)是指沿葉脈方向量出的最長(zhǎng)部分的長(zhǎng)度(不含葉柄),樹(shù)葉的寬是指沿與主葉脈垂直方向量出的最寬處的長(zhǎng)度,樹(shù)葉的長(zhǎng)寬比是指樹(shù)葉的長(zhǎng)與樹(shù)葉的寬的比值。
某同學(xué)在校園內(nèi)隨機(jī)收集了A樹(shù)、B樹(shù)、C樹(shù)三棵的樹(shù)葉各10片,通過(guò)測(cè)量得到這些樹(shù)葉的長(zhǎng)y(單位:cm),寬x(單位:cm)的數(shù)據(jù),計(jì)算長(zhǎng)寬比,理如下:
表1 A樹(shù)、B樹(shù)、C樹(shù)樹(shù)葉的長(zhǎng)寬比統(tǒng)計(jì)表
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | |
A樹(shù)樹(shù)葉的長(zhǎng)寬比 | 4.0 | 4.9 | 5.2 | 4.1 | 5.7 | 8.5 | 7.9 | 6.3 | 7.7 | 7.9 |
B樹(shù)樹(shù)葉的長(zhǎng)寬比 | 2.5 | 2.4 | 2.2 | 2.3 | 2.0 | 1.9 | 2.3 | 2.0 | 1.9 | 2.0 |
C樹(shù)樹(shù)葉的長(zhǎng)寬比 | 1.1 | 1.2 | 1.2 | 0.9 | 1.0 | 1.0 | 1.1 | 0.9 | 1.0 | 1.3 |
表1 A樹(shù)、B樹(shù)、C樹(shù)樹(shù)葉的長(zhǎng)寬比的平均數(shù)、中位數(shù)、眾數(shù)、方差統(tǒng)計(jì)表
平均數(shù) | 中位數(shù) | 眾數(shù) | 方差 | |
A樹(shù)樹(shù)葉的長(zhǎng)寬比 | 6.2 | 6.0 | 7.9 | 2.5 |
B樹(shù)樹(shù)葉的長(zhǎng)寬比 | 2.2 | 0.38 | ||
C樹(shù)樹(shù)葉的長(zhǎng)寬比 | 1.1 | 1.1 | 1.0 | 0.02 |
A樹(shù)、B樹(shù)、C樹(shù)樹(shù)葉的長(zhǎng)隨變化的情況
解決下列問(wèn)題:
(1)將表2補(bǔ)充完整;
(2)①小張同學(xué)說(shuō):“根據(jù)以上信息,我能判斷C樹(shù)樹(shù)葉的長(zhǎng)、寬近似相等。”
②小李同學(xué)說(shuō):“從樹(shù)葉的長(zhǎng)寬比的平均數(shù)來(lái)看,我認(rèn)為,下圖的樹(shù)葉是B樹(shù)的樹(shù)葉。”
請(qǐng)你判斷上面兩位同學(xué)的說(shuō)法中,誰(shuí)的說(shuō)法是合理的,誰(shuí)的說(shuō)法是不合理的,并給出你的理由;
(3)現(xiàn)有一片長(zhǎng)103cm,寬52cm的樹(shù)葉,請(qǐng)將該樹(shù)葉的數(shù)用“★”表示在圖1中,判斷這片樹(shù)葉更可能來(lái)自于A、B、C中的哪棵樹(shù)?并給出你的理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,P是CD上一點(diǎn),且AP和BP分別平分∠DAB和∠CBA.
(1)求∠APB的度數(shù);
(2)如果AD=5 cm,AP=8 cm,求△APB的周長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把四張形狀大小完全相同的小長(zhǎng)方形卡片(如圖①)不重疊的放在一個(gè)長(zhǎng)為 ,寬為的長(zhǎng)方形內(nèi),該長(zhǎng)方形內(nèi)部未被卡片覆蓋的部分用陰影表示.
(1)能否用只含的式子表示出圖②中兩塊陰影部分的周長(zhǎng)和?_____(填“能”或“不能”);(2)若能,請(qǐng)你用只含的式子表示出中兩塊陰影部分的周長(zhǎng)和;若不能,請(qǐng)說(shuō)明理由_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x,y的方程組,則下列結(jié)論中正確的是_____
①當(dāng)a=5時(shí),方程組的解是;
②當(dāng)x,y值互為相反數(shù)時(shí),a=20;
③當(dāng)2x2y=16時(shí),a=18;
④不存在一個(gè)實(shí)數(shù)a使得x=y.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)用14500元購(gòu)進(jìn)甲、乙兩種礦泉水共500箱,礦泉水的成本價(jià)與銷(xiāo)售價(jià)如表(二)所示:
類(lèi)別 | 成本價(jià)(元/箱) | 銷(xiāo)售價(jià)(元/箱) |
甲 | 25 | 35 |
乙 | 35 | 48 |
求:(1)購(gòu)進(jìn)甲、乙兩種礦泉水各多少箱?
(2)該商場(chǎng)售完這500箱礦泉水,可獲利多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com