【題目】如圖是拋物線圖象的一部分,拋物線的頂點是,對稱軸是直線,且拋物線與軸的一個交點為;直線的解析式為.下列結(jié)論:①;②;③方程有兩個不相等的實數(shù)根;④拋物線與軸的另一個交點是;⑤當時,則.其中正確的是( )
A.①②B.①③⑤C.①④D.①④⑤
【答案】B
【解析】
根據(jù)二次函數(shù)的性質(zhì)分別進行判斷,由對稱軸可以判斷①;由開口方向、對稱軸、與y軸的交點坐標,可判斷②;由圖像可知與直線有兩個交點,可判斷③;由對稱軸可以得到另一個交點,可判斷④,結(jié)合圖像,即可判斷⑤,即可得到答案.
解:①因為拋物線對稱軸是直線x=1,則,2a+b=0,故①正確,符合題意;
②∵拋物線開口向下,故a<0,
∵對稱軸在y軸右側(cè),故b>0,
∵拋物線與y軸交于正半軸,故c>0,
∴abc<0,
故②錯誤,不符合題意;
③從圖象看,兩個函數(shù)圖象有兩個交點,故方程ax2+bx+c=mx+n有兩個不相等的實數(shù)根,正確,符合題意;
④因為拋物線對稱軸是:直線x=1,B(4,0),
∴拋物線與x軸的另一個交點是(-2,0),
故④錯誤,不符合題意;
⑤由圖象得:當1<x<4時,有y2<y1,故⑤正確,符合題意;
故正確的有:①③⑤;
故選:B.
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解九年級學生2020年適應性考試數(shù)學成績,現(xiàn)從九年級學生中隨機抽取部分學生的適應性考試數(shù)學成績,按A,B,C,D四個等級進行統(tǒng)計,并將統(tǒng)計結(jié)果繪制成如圖所示不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題:
(1)此次抽查的學生人數(shù)為 ;
(2)把條形統(tǒng)計圖和扇形統(tǒng)計圖補充完整;
(3)若該校九年級有學生1200人.請估計在這次適應性考試中達到B等級以上(含B等級)的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某月食品加工廠以2萬元引進一條新的生產(chǎn)加工線.已知加工這種食品的成本價每袋20元,物價部門規(guī)定:該食品的市場銷售價不得高于每袋35元,若該食品的月銷售量y(千袋)與銷售單價x(元)之間的函數(shù)關系為:y=(月獲利=月銷售收入﹣生產(chǎn)成本﹣投資成本).
(1)當銷售單價定位25元時,該食品加工廠的月銷量為多少千袋;
(2)求該加工廠的月獲利M(千元)與銷售單價x(元)之間的函數(shù)關系式;
(3)求銷售單價范圍在30<x≤35時,該加工廠是盈利還是虧損?若盈利,求出最大利潤;若虧損,最小虧損是多少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】折紙是一種許多人熟悉的活動.近些年,經(jīng)過許多人的努力,已經(jīng)找到了多種將正方形折紙的一邊三等分的精確折法,下面探討其中的一種折法:
(綜合與實踐)
操作一:如圖1,將正方形紙片ABCD對折,使點A與點D重合,點B與點C重合,再將正方形紙片ABCD展開,得到折痕MN;
操作二:如圖2,將正方形紙片ABCD的右上角沿MC折疊,得到點D的對應的點為D′;
操作三:如圖3,將正方形紙片ABCD的左上角沿MD′折疊再展開,折痕MD′與邊AB交于點P;
(問題解決)
請在圖3中解決下列問題:
(1)求證:BP=D′P;
(2)AP:BP= ;
(拓展探究)
(3)在圖3的基礎上,將正方形紙片ABCD的左下角沿CD′折疊再展開,折痕CD′與邊AB交于點Q.再將正方形紙片ABCD過點D′折疊,使點A落在AD邊上,點B落在BC邊上,然后再將正方形紙片ABCD展開,折痕EF與邊AD交于點E,與邊BC交于點F,如圖4.試探究:點Q與點E分別是邊AB,AD的幾等分點?請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國是世界上13個貧水國家之一.某校有800名在校學生,學校為鼓勵學生節(jié)約用水,展開“珍惜水資源,節(jié)約每一滴水”系列教育活動.為響應學校號召,數(shù)學小組做了如下調(diào)查:
小亮為了解一個擰不緊的水龍頭的滴水情況,記錄了滴水時間和燒杯中的水面高度,如圖1.小明設計了調(diào)查問卷,在學校隨機抽取一部分學生進行了問卷調(diào)查,并制作出統(tǒng)計圖.如圖2和圖3.
經(jīng)結(jié)合圖2和圖3回答下列問題:
(1)參加問卷調(diào)查的學生人數(shù)為 人,其中選C的人數(shù)占調(diào)查人數(shù)的百分比為 .
(2)在這所學校中選“比較注意,偶爾水龍頭滴水”的大概有 人.若在該校隨機抽取一名學生,這名學生選B的概率為 .
請結(jié)合圖1解答下列問題:
(3)在“水龍頭滴水情況”圖中,水龍頭滴水量(毫升)與時間(分)可以用我們學過的哪種函數(shù)表示?請求出函數(shù)關系式.
(4)為了維持生命,每人每天需要約2400毫升水,該校選C的學生因沒有擰緊水龍頭,2小時浪費的水可維持多少人一天的生命需要?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某水果店購進一批優(yōu)質(zhì)晚熟芒果,進價為10元/千克,售價不低于15元/千克,且不超過40元/千克,根據(jù)銷售情況發(fā)現(xiàn)該芒果在一天內(nèi)的銷售量y(千克)與該天的售價x(元/千克)之間滿足如表所示的一次函數(shù)關系:
(1)寫出銷售量y與售價x之間的函數(shù)關系式;
(2)設某天銷售這種芒果獲利W元,寫出W與售價x之間的函數(shù)關系式,并求出當售價為多少元時,當天的獲利最大,最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,以AB為直徑作半圓⊙O,交BC于點D,連接AD、過點D作DE⊥AC,垂足為點E,交AB的延長線于點F.
(1)求證:EF是⊙O的切線;
(2)求證:△FDB∽△FAD;
(3)如果⊙O的半徑為5,sin∠ADE=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】Rt△OBC在直角坐標系內(nèi)的位置如圖所示,點C在y軸上,∠OCB=90°,反比例函數(shù)y=(k>0)在第一象限內(nèi)的圖象與OB邊交于點D(m,3),與BC邊交于點E(n,6).
(1)求m與n的數(shù)量關系;
(2)連接CD,若△BCD的面積為12,求反比例函數(shù)的解析式和直線OB的解析式;
(3)設點P是線段OB邊上的點,在(2)的條件下,是否存在點P,使得以B、C、P為項點的三角形與△BDE相似?若存在,求出此時點P戶的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】古希臘著名的畢達哥拉斯學派把1、3、6、10 …,這樣的數(shù)稱為“三角形數(shù)”,而把1、4、9、16…,這樣的數(shù)稱為“正方形數(shù)”.
(1)第5個三角形數(shù)是 ,第n個“三角形數(shù)”是 ,第5個“正方形數(shù)”是 ,第n個正方形數(shù)是 ;
(2)經(jīng)探究我們發(fā)現(xiàn):任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.
例如:①4=1+3,②9=3+6,③16=6+10,④ ,⑤ ,….
請寫出上面第4個和第5個等式;
(3)在(2)中,請?zhí)骄康?/span>n個等式,并證明你的結(jié)論.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com