【題目】如圖,已知直線與雙曲線交于A、B兩點(diǎn),A點(diǎn)的橫坐標(biāo)為3,則下列結(jié)論:①k=3;②關(guān)于x的不等式的解集為或;③若雙曲線上有一點(diǎn)C的縱坐標(biāo)為6,則△AOC的面積為8;④若在軸上有一點(diǎn)M,軸上有一點(diǎn)N,且點(diǎn)M、N、A、C四點(diǎn)恰好構(gòu)成平行四邊形,則M、N點(diǎn)的坐標(biāo)分別為M(2,0)、N(0,4),其中正確結(jié)論的個(gè)數(shù)( )
A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)
【答案】B
【解析】分析:①直線與雙曲線交于A、B兩點(diǎn),A點(diǎn)橫坐標(biāo)為3,代入正比例函數(shù),可求得點(diǎn)A的坐標(biāo),繼而求得k值;②根據(jù)對(duì)稱性,可求得點(diǎn)B的坐標(biāo),結(jié)合圖象,即可求得關(guān)于x的不等式的解集;③過(guò)點(diǎn)C作CD⊥x軸于點(diǎn)D,過(guò)點(diǎn)A作AE⊥軸于點(diǎn)E,可得S△AOC=S△OCD+S梯形AEDC-S△AOE=S梯形AEDC,又由雙曲線y= (k>0)上有一點(diǎn)C的縱坐標(biāo)為6,即可求得點(diǎn)C的坐標(biāo),繼而求得答案;④由當(dāng)MN∥AC,且MN=AC時(shí),點(diǎn)M、N、A、C四點(diǎn)恰好構(gòu)成平行四邊形,根據(jù)平移的性質(zhì),即可求得答案.
詳解:
∵直線與雙曲線交于A、B兩點(diǎn),A點(diǎn)橫坐標(biāo)為3,
∴點(diǎn)A的縱坐標(biāo)為:y=×3=2,
∴點(diǎn)A(3,2),
∴2=,
∴k=6;
①錯(cuò)誤;
∵直線與雙曲線交于A、B兩點(diǎn),點(diǎn)A(3,2),
∴B(-3,-2),
∴關(guān)于x的不等式的解集為或;
②正確;
過(guò)點(diǎn)C作CD⊥x軸于點(diǎn)D,過(guò)點(diǎn)A作AE⊥軸于點(diǎn)E,
∵雙曲線y= (k>0)上有一點(diǎn)C的縱坐標(biāo)為6,
∴把y=6代入y=得:x=1,
∴點(diǎn)C(1,6),
∴S△AOC=S△OCD+S梯形AEDC-S△AOE=S梯形AEDC=×(2+6)×(3-1)=8;
③正確;
如圖,當(dāng)MN∥AC,且MN=AC時(shí),點(diǎn)M、N、A、C四點(diǎn)恰好構(gòu)成平行四邊形,
∵點(diǎn)A(3,2),點(diǎn)C(1,6),
∴根據(jù)平移的性質(zhì)可得:M(2,0),N(0,4)或M′(-2,0),N′(0,-4).
④正確;
綜上,正確的結(jié)論有3個(gè),故選B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點(diǎn),過(guò)點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于F,連接CF,求證:四邊形ADCF是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是邊長(zhǎng)為6的正方形,點(diǎn)E在邊AB上,BE=4,過(guò)點(diǎn)E作EF∥BC,分別交BD、CD于G、F兩點(diǎn).若M、N分別是DG、CE的中點(diǎn),則MN的長(zhǎng)為 ( )
A. 3 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形 ABCD 的邊長(zhǎng)為1,其面積為 S1,以CD 為斜邊作等腰直角三角形,以該等腰直角三角形的一條直角邊為邊向外作正方形,其面積記為 S2,…,按此規(guī)律繼續(xù)下去,則 S9的值為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一不透明的布袋里,裝有紅、黃、藍(lán)三種顏色的小球(除顏色外其余都相同),其中有紅球2個(gè),藍(lán)球1個(gè),黃球若干個(gè),現(xiàn)從中任意摸出一個(gè)球是紅球的概率為.
(1)求口袋中黃球的個(gè)數(shù);
(2)甲同學(xué)先隨機(jī)摸出一個(gè)小球(不放回),再隨機(jī)摸出一個(gè)小球,請(qǐng)用“樹(shù)狀圖法”或“列表法”,
求兩次摸 出都是紅球的概率;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中, , AC=BC=3, 將△ABC折疊,使點(diǎn)A落在BC 邊上的點(diǎn)D處,EF為折痕,若AE=2,則的值為_____________.
【答案】
【解析】分析:過(guò)點(diǎn)D作DGAB于點(diǎn)G.根據(jù)折疊性質(zhì),可得AE=DE=2,AF=DF,CE=1,
在Rt△DCE中,由勾股定理求得,所以DB=;在Rt△ABC中,由勾股定理得;在Rt△DGB中,由銳角三角函數(shù)求得, ;
設(shè)AF=DF=x,則FG= ,在Rt△DFG中,根據(jù)勾股定理得方程=,解得,從而求得.的值
詳解:
如圖所示,過(guò)點(diǎn)D作DGAB于點(diǎn)G.
根據(jù)折疊性質(zhì),可知△AEF△DEF,
∴AE=DE=2,AF=DF,CE=AC-AE=1,
在Rt△DCE中,由勾股定理得,
∴DB=;
在Rt△ABC中,由勾股定理得;
在Rt△DGB中, , ;
設(shè)AF=DF=x,得FG=AB-AF-GB=,
在Rt△DFG中, ,
即=,
解得,
∴==.
故答案為: .
點(diǎn)睛:主要考查了翻折變換的性質(zhì)、勾股定理、銳角三件函數(shù)的定義;解題的關(guān)鍵是靈活運(yùn)用折疊的性質(zhì)、勾股定理、銳角三角函數(shù)的定義等知識(shí)來(lái)解決問(wèn)題.
【題型】填空題
【結(jié)束】
18
【題目】規(guī)定:[x]表示不大于x 的最整數(shù),(x) 表示不小于x的最小整數(shù),[x) 表示最接近x的整數(shù)(x≠n+0.5,n為整數(shù)),例如:[2.3]=2,(2.3)=3,[2.3)=2,則下列說(shuō)法正確的是__________(寫(xiě)出所有正確說(shuō)法).
①當(dāng)x=1.7時(shí),[x]+(x)+[x)=6;
②當(dāng)x=-2.1時(shí),[x]+(x)+[x)=-7;
③方程4[x]+3(x)+[x)=11的解為1<x<1.5;
④當(dāng)-1<x<1時(shí), 函數(shù)y=[x]+(x)+x 的圖像y=4x 的圖像有兩個(gè)交點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】市政府對(duì)城市建設(shè)進(jìn)行了整改,如圖,已知斜坡AB長(zhǎng)米,坡角(即∠ABC)為45°,AC⊥BC,現(xiàn)計(jì)劃在斜坡中點(diǎn)M處挖去部分斜坡,修建一個(gè)平行于水平線CB的休閑平臺(tái)MN和一條新的斜坡AN.(溫馨提示:后兩個(gè)小題結(jié)果都保留根號(hào))
(1)若修建的斜坡AN的坡比為,求休閑平臺(tái)MN的長(zhǎng)是多少米?
(2)一座建筑物GH距離B點(diǎn)34米遠(yuǎn)(BG=34米),小亮在M點(diǎn)測(cè)得建筑物頂部H的仰角(即∠HME)為30°.點(diǎn)A、C、B、G,H在同一個(gè)平面內(nèi),點(diǎn)C、B、G在同一條直線上,且HG⊥CG,問(wèn)建筑物GH高為多少米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為M(1,0),直線與該二次函數(shù)的圖象交于A,B兩點(diǎn),其中A點(diǎn)的坐標(biāo)為(3,-4),B點(diǎn)在y軸上.
(1)求m的值及這個(gè)二次函數(shù)的解析式;
(2)在x軸上找一點(diǎn)Q,使△QAB的周長(zhǎng)最小,并求出此時(shí)Q點(diǎn)坐標(biāo);
(3)若P(t,0)是x軸上的一個(gè)動(dòng)點(diǎn),過(guò)P作x軸的垂線分別與直線AB和二次函數(shù)的圖象交于D、E兩點(diǎn).
①設(shè)線段DE的長(zhǎng)為h,當(dāng)0<t<3時(shí),求h與t之間的函數(shù)關(guān)系式;
②若直線AB與拋物線的對(duì)稱軸交點(diǎn)為N,問(wèn)是否存在一點(diǎn)P,使以M、N、D、E為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出此時(shí)P點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在平面直角坐標(biāo)系xOy中,點(diǎn)A(-4,0),點(diǎn)B在直線y=x+2上.當(dāng)A、B兩點(diǎn)間的距離最小時(shí),點(diǎn)B的坐標(biāo)是( )
A. (,) B. (,) C. (-3,-1) D. (-3,)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com