【題目】(1) 已知拋物線的圖象經(jīng)過點(-2,-1),其對稱軸為x=-1.求拋物線的解析式.

(2) 如圖,在△ABC中,AB=AC,點D,E分別是BC,AB邊上的點,且∠ADE=C

求證:

【答案】(1);(2)詳見解析.

【解析】

1)利用待定系數(shù)法即可求得拋物線的解析式;
2)由AB=AC可得∠B=C,由已知條件∠ADE=C可證∠BDE=CAD,根據(jù)相似三角形的判定定理即可證△BDE∽△CAD,由相似三角形的性質(zhì)可得結(jié)論.

1)解:由題意得,,解得

∴拋物線的解析式為

2)證明:∵AB=AC

∴∠B=C

∵∠ADB=C+DAC ADE=C

ADB=ADE+BDE

∴∠DAC=BDE

∴△BDE∽△CAD

.

故答案為:(1;(2)詳見解析.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC中,∠BAC的內(nèi)角平分線與外角平分線分別交BCBC的延長線于點PQ

1)求∠PAQ的大。

2)若點MPQ的中點,求證:PM2CM·BM

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,AD平分∠BACBC于點D,OAB上一點,經(jīng)過點A,D⊙O分別交AB,AC于點E,F(xiàn),連接OFAD于點G.

(1)求證:BC⊙O的切線;

(2)設(shè)AB=x,AF=y,試用含x,y的代數(shù)式表示線段AD的長;

(3)BE=8,sinB=,求DG的長,

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明和小亮玩一個游戲:三張大小、質(zhì)地都相同的卡片上分別標有數(shù)字2,3,4(背面完全相同),現(xiàn)將標有數(shù)字的一面朝下小明從中任意抽取一張記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數(shù)字之和若和為奇數(shù)則小明勝;若和為偶數(shù),則小亮勝

(1)請你用畫樹狀圖或列表的方法,求出這兩數(shù)和為6的概率

(2)你認為這個游戲規(guī)則對雙方公平嗎?說說你的理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是等腰直角三角形,,以為邊向外作等邊三角形,連接于點,交于點,過點于點.下列結(jié)論:①;②;③;④.則正確的結(jié)論是_____.(填序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AC=BC=6,ACB90°,ABC的平分線交AC于點D,EAB上一點,且BE=BC,CFEDBD于點F,連接EF,ED.

1)求證:四邊形CDEF是菱形.

2)當∠ACB 度時,四邊形CDEF是正方形,請給予證明;并求此時正方形的邊長。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于點A(﹣1,0),B(3,0).下列結(jié)論:①2a﹣b=0;(a+c)2<b2;③當﹣1<x<3時,y<0;④當a=1時,將拋物線先向上平移2個單位,再向右平移1個單位,得到拋物線y=(x﹣2)2﹣2.其中正確的是( 。

A. ①③ B. ②③ C. ②④ D. ③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,是邊長為的等邊三角形,邊在射線上,且,點從點出發(fā),沿OM的方向以1cm/s的速度運動,當D不與點A重合時,將繞點C逆時針方向旋轉(zhuǎn)60°得到,連接DE.

(1)如圖1,求證:是等邊三角形;

(2)如圖2,當6<t<10時,DE是否存在最小值?若存在,求出DE的最小值;若不存在,請說明理由.

(3)當點D在射線OM上運動時,是否存在以D,E,B為頂點的三角形是直角三角形?若存在,求出此時t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A(a,1)、B(﹣1,b)都在雙曲線y=上,點P、Q分別是x軸、y軸上的動點,當四邊形PABQ的周長取最小值時,PQ所在直線的解析式是(

A.y=x B.y=x+1 C.y=x+2 D.y=x+3

查看答案和解析>>

同步練習冊答案