【題目】如圖,已知,,.試說明直線與垂直.(請在下面的解答過程的空格內(nèi)填空或在括號內(nèi)填寫理由).
理由:,(已知)
,
.
又,(已知)
.(等量代換)
,
.
,(已知)
,,
.
【答案】GD,AC,同位角相等,兩直線平行;∠DAC,兩直線平行,內(nèi)錯角相等;∠DAC;AD,EF,同旁內(nèi)角互補,兩直線平行;兩直線平行,同位角相等;AD,BC.
【解析】
結合圖形,根據(jù)平行線的判定和性質(zhì)逐一進行填空即可.
∵∠1=∠C,(已知)
∴GD∥AC,(同位角相等,兩直線平行)
∴∠2=∠DAC.(兩直線平行,內(nèi)錯角相等)
又∵∠2+∠3=180°,(已知)
∴∠3+∠DAC=180°.(等量代換)
∴AD∥EF,(同旁內(nèi)角互補,兩直線平行)
∴∠ADC=∠EFC.(兩直線平行,同位角相等)
∵EF⊥BC,(已知 )
∴∠EFC=90°,
∴∠ADC=90°,
∴AD⊥BC.
故答案為:GD,AC,同位角相等,兩直線平行;∠DAC,兩直線平行,內(nèi)錯角相等;∠DAC;AD,EF,同旁內(nèi)角互補,兩直線平行;兩直線平行,同位角相等;AD,BC.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,BC⊥AF于點C,∠A+∠1=90°.
(1)求證:AB∥DE;
(2)如圖2,點P從點A出發(fā),沿線段AF運動到點F停止,連接PB,PE.則∠ABP,∠DEP,∠BPE三個角之間具有怎樣的數(shù)量關系(不考慮點P與點A,D,C重合的情況)?并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(探究)如圖①,∠AFH和∠CHF的平分線交于點O,EG經(jīng)過點O且平行于FH,分別與AB、CD交于點E、G.
(1)若∠AFH=60°,∠CHF=50°,則∠EOF=_____度,∠FOH=_____度.
(2)若∠AFH+∠CHF=100°,求∠FOH的度數(shù).
(拓展)如圖②,∠AFH和∠CHI的平分線交于點O,EG經(jīng)過點O且平行于FH,分別與AB、CD交于點E、G.若∠AFH+∠CHF=α,直接寫出∠FOH的度數(shù).(用含a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下面材料: 在數(shù)學課上,老師提出如下問題:
已知:如圖,四邊形ABCD是平行四邊形.求作:菱形AECF,使點E,F(xiàn)分別在BC,AD上.
小凱的作法如下:
(i)連接AC;
(ii)作AC的垂直平分線EF分別交BC,AD于E,F(xiàn);
(iii)連接AE,CF.
所以四邊形AECF是菱形.
老師說:“小凱的作法正確.”
請回答:在小凱的作法中,判定四邊形AECF是菱形的依據(jù)是 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在長方形ABCD中,AB=2,BC=1,運點P從點B出發(fā),沿路線BCD作勻速運動,那么△ABP的面積與點P運動的路程之間的函數(shù)圖象大致是( ).
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】三角板是學習數(shù)學的重要工具,將一副三角板中的兩塊直角三角板的直角頂點按如圖方式疊放在一起,當且點在直線的上方時,解決下列問題:(友情提示:,,.
(1)①若,則的度數(shù)為 ;
②若,則的度數(shù)為 ;
(2)由(1)猜想與的數(shù)量關系,并說明理由.
(3)這兩塊三角板是否存在一組邊互相平行?若存在,請直接寫出的角度所有可能的值(不必說明理由);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某廠計劃生產(chǎn)A、B兩種產(chǎn)品共50件.已知A產(chǎn)品每件可獲利潤1200元,B產(chǎn)品每件可獲利潤700元,設生產(chǎn)兩種產(chǎn)品的獲利總額為y(元),生產(chǎn)A產(chǎn)品x(件).
(1)寫出y與x之間的函數(shù)關系式;
(2)若生產(chǎn)A、B兩種產(chǎn)品的件數(shù)均不少于10件,求總利潤的最大值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一次函數(shù) y1=kx+b 與 y2=x+a 的圖象如圖所示,則下列結論:①k<0;②a<0,b<0;③當 x=3 時,y1=y2;④不等式 kx+b>x+a 的解集是 x<3,其中正確的結論有_______.(只填序號)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下表是小紅在某個路口統(tǒng)計20分鐘各種車輛通過情況制成的統(tǒng)計表,其中空格處的字跡已模糊,但小紅還記得7:50~8:00時段內(nèi)的電瓶車車輛數(shù)與8:00~8:10時段內(nèi)的貨車車輛數(shù)之比是7∶2.
電瓶車 | 公交車 | 貨車 | 小轎車 | 合計 | |
7:50~8:00 | 5 | 63 | 133 | ||
8:00~8:10 | 5 | 45 | 82 | ||
合計 | 67 | 30 | 108 |
(1)若在7:50~8:00時段,經(jīng)過的小轎車數(shù)量正好是電瓶車數(shù)量的,求這個時段內(nèi)的電瓶車通過的車輛數(shù);
(2)根據(jù)上述表格數(shù)據(jù),求在7:50~8:00和8:00~8:10兩個時段內(nèi)電瓶車和貨車的車輛數(shù);
(3)據(jù)估計,在所調(diào)查的7:50~8:00時段內(nèi),每增加1輛公交車,可減少8輛小轎車行駛,為了使該時段內(nèi)小轎車流量減少到比公交車多13輛,則在該路口應再增加幾輛公交車?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com