【題目】如圖,在平面直角坐標(biāo)系中,菱形ABCD的頂點A的坐標(biāo)為(3,0),頂點B在y軸正半軸上,頂點D在x軸負半軸上.若拋物線y=-x2-5x+c經(jīng)過點B、C,則菱形ABCD的面積為_______

【答案】

【解析】

根據(jù)拋物線的解析式結(jié)合拋物線過點B、C,即可得出點C的橫坐標(biāo),由菱形的性質(zhì)可得出AD=AB=BC=5,再根據(jù)勾股定理可求出OB的長度,套用平行四邊形的面積公式即可得出菱形ABCD的面積.

拋物線的對稱軸為x=-

∵拋物線y=-x2-5x+c經(jīng)過點B、C,且點By軸上,BCx軸,

∴點C的橫坐標(biāo)為-5.

∵四邊形ABCD為菱形,

AB=BC=AD=5,

∴點D的坐標(biāo)為(-2,0),OA=3.

RtABC中,AB=5,OA=3,

OB==4,

S菱形ABCD=ADOB=5×4=20.

故答案為:20.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABACADBC邊上的高,點EFAD的三等分點,若AD6cmCD3cm,則圖中陰影部分的面積是____cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,吊車在水平地面上吊起貨物時,吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計算結(jié)果精確到0.1m,參考數(shù)據(jù)sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)

(1)當(dāng)?shù)醣鄣撞緼與貨物的水平距離AC為5m時,吊臂AB的長為   m.

(2)如果該吊車吊臂的最大長度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長度與貨物的高度忽略不計)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,平行四邊形ABCD,對角線ACBD相交于點E,點GAD的中點,且AGAB、CG的延長線交BA的延長線于點F,連接FD.試探究當(dāng)∠BCD  °時,四邊形ACDF是矩形,證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD的頂點C在正方形AEFG的邊AE上,AB=2,AE=,則點G BE的距離是(   )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,將ABC繞點A順時針旋轉(zhuǎn)90°后得到AB′C′(點B的對應(yīng)點是點B′,點C的對應(yīng)點是點C′),連接CC′.若∠CC′B′32°,則∠B的大小是(

A.32°B.64°C.77°D.87°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC在平面直角坐標(biāo)系xOy中的位置如圖所示.

1)作△ABC關(guān)于點C成中心對稱的△A1B1C1,并直接寫出A1、B1、C1各點的坐標(biāo);

2)將△A1B1C1向右平移4個單位,作出平移后的△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于的方程有兩個不相等的實數(shù)根、

(1)求的取值范圍;

(2)是否存在實數(shù),使方程兩實數(shù)根互為相反數(shù)?如果存在,求出的值,如不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,正方形MNPQ網(wǎng)格中,每個小方格的邊長都相等,正方形ABCD的頂點在正方形MNPQ4條邊的小方格頂點上.

1)設(shè)正方形MNPQ網(wǎng)格內(nèi)的每個小方格的邊長為1,求:正方形ABCD的面積;

2在圖2中畫出以AB為一條直角邊的等腰直角△ABC,且點C在小正方形的頂點上;

在圖2中畫出以AB為一邊的菱形ABDE,且點D和點E均在小正方形的頂點上,菱形ABDE的面積為15,連接CE,請直接寫出線段CE的長.

查看答案和解析>>

同步練習(xí)冊答案