【題目】將反比例函數(shù)的圖像繞著原點O順時針旋轉(zhuǎn)45°得到新的雙曲線圖像(如圖1所示),直線軸,F為x軸上的一個定點,已知,圖像上的任意一點P到F的距離與直線l的距離之比為定值,記為e,即.
(1)如圖1,若直線l經(jīng)過點B(1,0),雙曲線的解析式為,且,則F點的坐標為__________.
(2)如圖2,若直線l經(jīng)過點B(1,0), 雙曲線的解析式為,且,P為雙曲線在第一象限內(nèi)圖像上的動點,連接PF,Q為線段PF上靠近點P的三等分點,連接HQ,在點P運動的過程中,當時,點P的坐標為__________.
【答案】F(4,0)
【解析】
(1)令y=0求出x的值,結(jié)合e=2可得出點A的坐標,由點B的坐標及e=2可求出AF的長度,將其代入OF=OB+AB+AF中即可求出點F的坐標;
(2)設(shè)點P的坐標為(x,),則點H的坐標為(1,),由Q為線段PF上靠近點P的三等分點,可得出點Q的坐標為(x+,),利用兩點間的距離公式列方程解答即可;
解:(1)如圖:
當y=0時,±,
解得:x1=2,x2=-2(舍去),
∴點A的坐標為(2,0).
∵點B的坐標為(1,0),
∴AB=1.
∵e=2,
∴,
∴AF=2,
∴OF=OB+AB+AF=4,
∴F點的坐標為(4,0).
故答案為:(4,0).
(2)設(shè)點P的坐標為(x,),則點H的坐標為(1,).
∵點Q為線段PF上靠近點P的三等分點,點F的坐標為(5,0),
∴點Q的坐標為(x+,).
∵點H的坐標為(1,),HQ=HP,
∴(x+-1)2+(-)2=[(x-1)]2,
化簡得:15x2-48x+39=0,
解得:x1=,x2=1(舍去),
∴點P的坐標為(,).
故答案為:(,).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種商品每天的銷售利潤y(元)與銷售單價x(元)之間滿足關(guān)系y=mx2+20x+n,其圖象如圖所示.
(1)m=_____,n=_____.
(2)銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?
(3)該種商品每天的銷售利潤不低于16元時,直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某工廠設(shè)計了一款成本為20元/件的工藝品投放市場進行試銷,經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元∕件) | … | 30 | 40 | 50 | 60 | … |
每天銷售量y(件) | … | 500 | 400 | 300 | 200 | … |
(1)研究發(fā)現(xiàn),每天銷售量y與單價x滿足一次函數(shù)關(guān)系,求出y與x的關(guān)系式;
(2)當?shù)匚飪r部門規(guī)定,該工藝品銷售單價最高不能超過45元/件,那么銷售單價定為多少時,工藝廠試銷該工藝品每天獲得的利潤8000元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在一次軍事演習(xí)中,藍方在一條東西走向的公路上的A處朝正南方向撤退,紅方在公路上的B處沿南偏西60°方向前進實施攔截,紅方行駛1000米到達C處后,因前方無法通行,紅方?jīng)Q定調(diào)整方向,再朝南偏西45°方向前進了相同的距離,剛好在D處成功攔截藍方,求攔截點D處到公路的距離(結(jié)果不取近似值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小剛準備用一段長50米的籬笆圍成一個三角形形狀的場地,用于飼養(yǎng)雞,已知第一條邊長為m米,由于條件限制第二條邊長只能比第一條邊長的3倍少2米.
(1)用含m的式子表示第三條邊長;
(2)第一條邊長能否為10米?為什么?
(3)若第一條邊長最短,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB和DE是直立在地面上的兩根立柱.AB=5m,某一時刻AB在陽光下的投影BC=3m,同時測量出DE在陽光下的投影長為6m.
(1)請你在圖中畫出此時DE在陽光下的投影;
(2)請你計算DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,O是等邊△ABC的外心,BO的延長線和⊙O相交于點D,連接DC,DA,OA,OC.
(1)求證:△BOC≌△CDA;
(2)若AB=,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖:反比例函數(shù)的圖象與一次函數(shù)的圖象交于、兩點,其中點坐標為.
(1)求反比例函數(shù)與一次函數(shù)的表達式;
(2)觀察圖象,直接寫出當時,自變量的取值范圍;
(3)一次函數(shù)的圖象與軸交于點,點是反比例函數(shù)圖象上的一個動點,若,求此時點的坐標.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】工人師傅用一塊長為12分米,寬為8分米的矩形鐵皮制作一個無蓋長方體容器,需要將四角各裁掉一個正方形.(厚度不計)
(1)請在圖中畫出裁剪示意圖,用實線表示裁剪線,虛線表示折痕;并求當長方體底面面積為32平方分米時,裁掉的正方形邊長是多少?
(2)若要求制作的長方體的底面長不大于底面寬的5倍(長大于寬),并將容器外表面進行防銹處理,側(cè)面每平方分米的費用為0.5元,底面每平方分米的費用為2元,求裁掉的正方形邊長為多少時,總費用最低,最低費用為多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com