【題目】某工廠設(shè)計(jì)了一款成本為20/件的工藝品投放市場進(jìn)行試銷,經(jīng)過調(diào)查,得到如下數(shù)據(jù):

銷售單價(jià)x(元件)

30

40

50

60

每天銷售量y(件)

500

400

300

200

(1)研究發(fā)現(xiàn),每天銷售量y與單價(jià)x滿足一次函數(shù)關(guān)系,求出yx的關(guān)系式;

(2)當(dāng)?shù)匚飪r(jià)部門規(guī)定,該工藝品銷售單價(jià)最高不能超過45/件,那么銷售單價(jià)定為多少時(shí),工藝廠試銷該工藝品每天獲得的利潤8000元?

【答案】(1)y=﹣10x+800;(2)銷售單價(jià)定為40/件時(shí),工藝廠試銷該工藝品每天獲得的利潤8000元.

【解析】

(1)利用待定系數(shù)法求解可得;

(2)根據(jù)總利潤=單件利潤×銷售量可得關(guān)于x的一元二次方程,解之即可得.

(1)設(shè)y=kx+b,

根據(jù)題意可得,

解得:,

y=﹣10x+800;

(2)根據(jù)題意,得:(x﹣20)(﹣10x+800)=8000,

整理,得:x2﹣100x+2400=0,

解得:x1=40,x2=60,

∵銷售單價(jià)最高不能超過45/件,

x=40,

答:銷售單價(jià)定為40/件時(shí),工藝廠試銷該工藝品每天獲得的利潤8000元.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1cm、3cm、5cm、7cm、9cm的五條線段中,任選三條可以構(gòu)成三角形的概率是________%.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AC、BD相交于點(diǎn)O,OAC的中點(diǎn),AB//DC,AC=10,BD=8.

(1)求證:四邊形ABCD是平行四邊形;

(2)若ACBD,求平行四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,圖1、圖2分別是的網(wǎng)格,網(wǎng)格中的每個(gè)小正方形的邊長均為1.請(qǐng)按下列要求分別畫出相應(yīng)的圖形,且所畫圖形的每個(gè)頂點(diǎn)均在所給小正方形的頂點(diǎn)上.

(1)在圖1中畫出一個(gè)周長為的菱形 (非正方形);

(2)在圖2中畫出一個(gè)面積為9的平行四邊形,且滿足,請(qǐng)直接寫出平行四邊形的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形中,,垂足為點(diǎn)

(1)如圖1,求證:

(2)如圖2,點(diǎn)上一點(diǎn),連接,求證:;

(3)(2)的條件下,如圖3,點(diǎn)上一點(diǎn),連接,點(diǎn)的中點(diǎn),分別連接,,,求線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,ABDE是直立在地面上的兩根立柱.AB=7m,某一時(shí)刻AB在太陽光下的投影BC=4m.

(1)請(qǐng)你在圖中畫出此時(shí)DE在陽光下的投影;

(2)在測(cè)量AB的投影時(shí),同時(shí)測(cè)量出DE在陽光下的投影長為8m,計(jì)算DE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】假山具有多方面的造景功能,與建筑、植物等組合成富于變化的景致.某公園有一座假山,小亮、小慧等同學(xué)想用一些測(cè)量工具和所學(xué)的幾何知識(shí)測(cè)量這座假山的高度來檢驗(yàn)自己掌握知識(shí)和運(yùn)用知識(shí)的能力,如圖,在陽光下,小亮站在水平地面的D處,此時(shí)小亮身高的影子頂端與假山的影子頂端E重合,這時(shí)小亮身高CD的影長DE=2米,一段時(shí)間后,小亮從D點(diǎn)沿BD的方向走了3.6米到達(dá)G處,此時(shí)小亮身高的影子頂端與假山的影子頂端H重合,這時(shí)小亮身高的影長GH=2.4米,已知小亮的身高CD=FG=1.5米,點(diǎn)G,E,D均在直線BH上,AB⊥BH,CD⊥BH,GF⊥BH,請(qǐng)你根據(jù)題中提供的相關(guān)信息,求出假山的高度AB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,tanA= ,點(diǎn)E、F分別是AB、AD上任意的點(diǎn)(不與端點(diǎn)重合),且AE=DF,連接BF與DE相交于點(diǎn)G,連接CG與BD相交于點(diǎn)H,給出如下幾個(gè)結(jié)論:(1)△AED≌△DFB;(2)CG與BD一定不垂直;(3)∠BGE的大小為定值;(4)S四邊形BCDG= CG2;其中正確結(jié)論的序號(hào)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地2016年為做好“精準(zhǔn)扶貧”,投入資金1200萬元用于異地安置,并規(guī)劃投入異地安置資金的年平均增長率在三年內(nèi)保持不變,已知2018年在2016年的基礎(chǔ)上增加了投入異地安置資金1500萬元.

12017年該地投入異地安置資金為多少元?

2)在2017年異地安置的具體實(shí)施中,該地要求投入用于優(yōu)先搬遷租房獎(jiǎng)勵(lì)的資金不低于2017年該地投入異地安置資金的25%.規(guī)定前1000戶(含第1000)戶)每戶每天獎(jiǎng)勵(lì)8元,1000戶以后每戶每天獎(jiǎng)勵(lì)5元,按租房400天計(jì)算,求2017年該地至少有多少戶享受到優(yōu)先搬遷租房獎(jiǎng)勵(lì).

查看答案和解析>>

同步練習(xí)冊(cè)答案