【題目】某種商品每天的銷售利潤y(元)與銷售單價x(元)之間滿足關(guān)系y=mx2+20x+n,其圖象如圖所示.

(1)m=_____,n=_____

(2)銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?

(3)該種商品每天的銷售利潤不低于16元時,直接寫出x的取值范圍.

【答案】(1)﹣1,﹣75(2)銷售單價為10元時,該種商品每天的銷售利潤最大,最大利潤為25元(3)銷售單價不少于7元且不超過13元時,該種商品每天的銷售利潤不低于16元

【解析】

(1)利用待定系數(shù)法求二次函數(shù)解析式得出即可;

(2)利用配方法求出二次函數(shù)最值即可;

(3)根據(jù)函數(shù)值大于或等于16,可得不等式的解集,可得答案.

(1)y=mx2+20x+n圖象過點(diǎn)(5,0)、(7,16),

,

解得:;

故答案為:﹣1,﹣75;

(2)y=﹣x2+20x﹣75=﹣(x﹣10)2+25,

∴當(dāng)x=10時,y最大=25.

答:銷售單價為10元時,該種商品每天的銷售利潤最大,最大利潤為25元;

(3)∵函數(shù)y=﹣x2+20x﹣75圖象的對稱軸為直線x=10,

可知點(diǎn)(7,16)關(guān)于對稱軸的對稱點(diǎn)是(13,16),

又∵函數(shù)y=﹣x2+20x﹣75圖象開口向下,

∴當(dāng)7≤x≤13時,y≥16.

答:銷售單價不少于7元且不超過13元時,該種商品每天的銷售利潤不低于16元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD內(nèi)兩點(diǎn)M、N,滿足MB⊥BC,MD⊥DC,NB⊥BA,ND⊥DA,若四邊形BMDN的面積是菱形ABCD面積的,則cosA= ______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以G(0,1)為圓心,半徑為2的圓與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),點(diǎn)E為⊙G上一動點(diǎn),CFAEF.當(dāng)點(diǎn)E從點(diǎn)B出發(fā)順時針運(yùn)動到點(diǎn)D時,點(diǎn)F所經(jīng)過的路徑長為( 。

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】四張小卡片上分別寫有數(shù)字1、2、3、4,它們除數(shù)字外沒有任何區(qū)別,現(xiàn)將它們放在盒子里攪勻.

1)隨機(jī)地從盒子里抽取一張,求抽到數(shù)字3的概率;

2)隨機(jī)地從盒子里抽取一張,將數(shù)字記為x,不放回再抽取第二張,將數(shù)字記為y,請你用畫樹狀圖或列表的方法表示所有等可能的結(jié)果,并求出點(diǎn)(xy)在函數(shù)圖象上的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種商品每天的銷售利潤y(元)與銷售單價x(元)之間滿足關(guān)系y=mx2+20x+n,其圖象如圖所示.

(1)m=_____,n=_____

(2)銷售單價為多少元時,該種商品每天的銷售利潤最大?最大利潤為多少元?

(3)該種商品每天的銷售利潤不低于16元時,直接寫出x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)P的坐標(biāo)為(0,5),以P為圓心的圓與x軸相切,P的弦ABB點(diǎn)在A點(diǎn)右側(cè))垂直于y軸,且AB=8,反比例函數(shù)k≠0)經(jīng)過點(diǎn)B,則k=______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黃巖某校搬遷后,需要增加教師和學(xué)生的寢室數(shù)量,寢室有三類,分別為單人間(供一個人住宿),雙人間(供兩個人住宿),四人間(供四個人住宿).因?qū)嶋H需要,單人間的數(shù)量在2030之間(包括2030),且四人間的數(shù)量是雙人間的5倍.

(1)2018年學(xué)校寢室數(shù)為64個,以后逐年增加,預(yù)計2020年寢室數(shù)達(dá)到121個,求20182020年寢室數(shù)量的年平均增長率;

(2)若三類不同的寢室的總數(shù)為121個,則最多可供多少師生住宿?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家推行節(jié)能減排,低碳經(jīng)濟(jì)政策后,某環(huán)保節(jié)能設(shè)備生產(chǎn)企業(yè)的產(chǎn)品供不應(yīng)求.若該企業(yè)的某種環(huán)保設(shè)備每月的產(chǎn)量保持在一定的范圍,每套產(chǎn)品的生產(chǎn)成本不高于50萬元,每套產(chǎn)品的售價不低于80萬元,已知這種設(shè)備的月產(chǎn)量x(套)與每套的售價y(萬元)之間滿足關(guān)系式y=150﹣2x,月產(chǎn)量x(套)與生產(chǎn)總成本y2(萬元)存在如圖所示的函數(shù)關(guān)系.

(1)直接寫出y2x之間的函數(shù)關(guān)系式;

(2)求月產(chǎn)量x的范圍;

(3)當(dāng)月產(chǎn)量x(套)為多少時,這種設(shè)備的利潤W(萬元)最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,從熱氣球C處測得地面A、B兩點(diǎn)的俯角分別為45°、30°,如果此時熱氣球C處離地面的高度CD為100米,且點(diǎn)A、D、B在同一直線上,求AB兩點(diǎn)間的距離(結(jié)果保留根號)

查看答案和解析>>

同步練習(xí)冊答案