【題目】某股民上周五購進(jìn)某公司股票500股,每股30元.(星期六、星期日封盤,關(guān)閉交易)下表是本周內(nèi)每日該股票比前一天的漲跌情況(單位:元)
星期一,星期二被墨水污染,只知道星期一比上周五上漲10%,星期二比星期一下跌10%.根據(jù)以上信息,請回答:
(1)星期三收盤時(shí),每股是多少元?
(2)本周內(nèi)每股最高價(jià)是多少元?最低價(jià)是多少元?
(3)已知該股民購進(jìn)股票時(shí)付了1.5‰的手續(xù)費(fèi),賣出時(shí)還要付成交額1.5‰的手續(xù)費(fèi)和1‰的交易稅.如果他在星期五收盤時(shí)全部賣出該股票,他是賺錢還是虧本?賺或虧了多少錢?
【答案】(1)星期三收盤時(shí),每股是31元;(2)本周內(nèi)每股最高價(jià)是33元,最低價(jià)是29.7元;(3)他賺錢了,賺了937.5元.
【解析】
(1)根據(jù)題意即可求出。
(2)算出周一至周五每股的收盤價(jià),進(jìn)行比較得出即可。
(3)根據(jù)股票交易時(shí)的收益等于賣出的交易額減去賣出時(shí)的手續(xù)費(fèi)成交額費(fèi),減去買進(jìn)時(shí)的成本,買進(jìn)時(shí)的手續(xù)費(fèi),可得答案.
(1)星期一收盤時(shí): 30(1+10)=33(元);
星期二收盤時(shí): 33(1-10)=29.7(元);
星期三收盤時(shí):29.7+1.3=31(元).
答:星期三收盤時(shí),每股是31元.
(2)星期一收盤時(shí): 30(1+10)=33(元);
星期二收盤時(shí): 30(1-10)=29.7(元);
星期三收盤時(shí):29.7+1.3=31(元).
星期四收盤時(shí):31-1=30(元);
星期五收盤時(shí):30+2=32(元).
答:本周內(nèi)每股最高價(jià)是33元,最低價(jià)是29.7元.
(3)投資+手續(xù)費(fèi)= 500(1+1.5‰)=15022.5(元);
賣出成交額-(手續(xù)費(fèi)+交易稅)=500(1-1.5‰-1‰)=15960(元);
收益: 15960-15022.5=937.5(元).
答:他賺錢了,賺了937.5元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,AB為直徑,E為AB延長線上的點(diǎn),作OD∥BC交EC的延長線于點(diǎn)D,連接AD.
(1)求證:AD=CD;
(2)若DE是⊙O的切線,CD=3,CE=2,求tanE和cos∠ABC的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,A(-2,0),B(0,6),C(6,0),∠ABC+∠ADC=180°,BC⊥CD.
(1)求證:∠ABO=∠CAD;
(2)求四邊形ABCD的面積;
(3)如圖2,E為∠BCO的鄰補(bǔ)角的平分線上的一點(diǎn),且∠BEO=45°,OE交BC于點(diǎn)F,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合題。
(1)如圖1,已知AD=BC,AC=BD.求證:△ADB≌△BCA.
(2)如圖2,已知AB是⊙O的一條直徑,延長AB至點(diǎn)C,使AC=3BC,CD與⊙O相切于點(diǎn)D,若CD= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為原點(diǎn),平行四邊形ABCD的邊BC在x軸上,D點(diǎn)在y軸上,C點(diǎn)坐標(biāo)為(2,0),BC=6,∠BCD=60°,點(diǎn)E是AB上一點(diǎn),AE=3EB,⊙P過D,O,C三點(diǎn),拋物線y=ax2+bx+c過點(diǎn)D,B,C三點(diǎn).
(1)求拋物線的解析式;
(2)說明ED是⊙P的切線,若將△ADE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°,E點(diǎn)的對應(yīng)點(diǎn)E′會(huì)落在拋物線上嗎?請說明理由;
(3)若點(diǎn)M為此拋物線的頂點(diǎn),平面上是否存在點(diǎn)N,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y= x與雙曲線y= (x>0)交于點(diǎn)A,將直線y= x向下平移個(gè)6單位后,與雙曲線y= (x>0)交于點(diǎn)B,與x軸交于點(diǎn)C,則C點(diǎn)的坐標(biāo)為;若 =2,則k= .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長陽公園有四棵古樹A,B,C,D (單位:米).
(1)請寫出A,B,C,D四點(diǎn)的坐標(biāo);
(2)為了更好地保護(hù)古樹,公園決定將如圖所示的四邊形EFGH用圍欄圈起來,劃為保護(hù)區(qū),請你計(jì)算保護(hù)區(qū)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,AE是BC邊上的中線,過點(diǎn)C作AE 的垂線CF,垂足為F,過點(diǎn)B作BD⊥BC,交CF的延長線于點(diǎn)D.
(1)求證:AE=CD.
(2)若AC=12 cm,求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com