如圖(1),直線y=kx-k2(k為常數(shù),且k>0)與y軸交于點(diǎn)C,與拋物線y=ax2有唯一公共點(diǎn)B,點(diǎn)B在x軸上的正投影為點(diǎn)E,已知點(diǎn)D(0,4).
(1)求拋物線的解析式;
(2)是否存在實(shí)數(shù)k,使經(jīng)過D,O,E三點(diǎn)的圓與拋物線的交點(diǎn)恰好為B?若存在,請(qǐng)求出時(shí)k的值;若不存在,請(qǐng)說明理由.
(3)如圖(2),連接CE,已知點(diǎn)F(0,1),直線FA與CE相交于點(diǎn)M,不論k取何值,在①∠EAM=∠ECA,②∠EAM=∠ACF兩個(gè)等式中有一個(gè)恒成立.請(qǐng)判斷哪一個(gè)恒成立,并證明這個(gè)成立的結(jié)論.
(1)∵直線y=kx-k2與拋物線y=ax2有唯一公共點(diǎn)B,
∴kx-k2=ax2,即ax2-kx+k2=0有兩個(gè)相等的實(shí)數(shù)根,
∴(-k)2-4ak2=0,而k>0,
∴a=
1
4

∴y=
1
4
x2;

(2)存在實(shí)數(shù)k,使得經(jīng)過D、O、E三點(diǎn)的圓與拋物線的交點(diǎn)剛好為點(diǎn)B,
y=kx-k2
y=
1
4
x2
的解為
x=2k
y=k2

∴點(diǎn)B的坐標(biāo)為(2k,k2),
又∵點(diǎn)B在x軸上的正投影為點(diǎn)E,連接BE,
則BE⊥x軸于E,
∴E(2k,0),
∴DE⊥OB,DF=EF=OF,
連接OB、DE,則OB、DE均為過點(diǎn)D、0、E三點(diǎn)的圓的直徑,
∴Rt△ODE≌Rt△EBO(HL),
∴BE=DO,
∵D(0,4),
∴k2=4,
∴k=2(k>0);

(3)結(jié)論②∠EAM=∠ACF成立,
對(duì)y=kx-k2,令y=0,得x=k,
∴A(k,0),
∴OA=k,
令x=0,得y=-k2,
∴C(0,-k2),
∴OC=k2,
又∵F(0,1),
∴OF=1,
∴OA2=OF•OC,
OA
OF
=
OC
OA
,
又∵∠FOA=∠AOC=90°,
∴△AFO△CAO,
∴∠FAO=∠ACF,而∠FAO=∠EAM,
∴∠EAM=∠ACF.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知二次函數(shù)y=ax2-4x+c的圖象與x軸交于點(diǎn)A(-1,0)、點(diǎn)C,與y軸交于點(diǎn)B(0,-5).
(1)求該二次函數(shù)的解析式;
(2)已知該函數(shù)圖象的對(duì)稱軸上存在一點(diǎn)P,使得△ABP的周長(zhǎng)最。(qǐng)求出點(diǎn)P的坐標(biāo),并求出△ABP周長(zhǎng)的最小值;
(3)在線段AC上是否存在點(diǎn)E,使以C、P、E為頂點(diǎn)的三角形與三角形ABC相似?若存在寫出所有點(diǎn)E的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線與x軸交于A(-1,0),B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).
(1)求拋物線的解析式;
(2)設(shè)拋物線的頂點(diǎn)為D,在其對(duì)稱軸的右側(cè)的拋物線上是否存在點(diǎn)P,使得△PDC是等腰三角形?若存在,求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)點(diǎn)M是拋物線上一點(diǎn),以B,C,D,M為頂點(diǎn)的四邊形是直角梯形,試求出點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=ax2+bx+3(a≠0)經(jīng)過A(3,0),B(4,1)兩點(diǎn),與x軸另一交點(diǎn)為D,與y軸交于點(diǎn)C.
(1)求拋物線y=ax2+bx+3(a≠0)的函數(shù)關(guān)系式;
(2)如圖,連接AC,在拋物線上是否存在點(diǎn)P,使∠ACD+∠ACP=45°?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)連接AC,E為線段AC上任意一點(diǎn)(不與A、C重合)經(jīng)過A、E、O三點(diǎn)的圓交直線AB于點(diǎn)F,
①點(diǎn)E在運(yùn)動(dòng)過程中四邊形OEAF的面積是否發(fā)生變化,并說明理由;
②當(dāng)EF分四邊形OEAF的面積為1:2兩部分時(shí),求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知梯形ABCD中,ADBC,且AD<BC,AD=5,AB=DC=2.
(1)如圖,P為AD上的一點(diǎn),滿足∠BPC=∠A,求AP的長(zhǎng);
(2)如果點(diǎn)P在AD邊上移動(dòng)(點(diǎn)P與點(diǎn)A、D不重合),且滿足∠BPE=∠A,PE交直線BC于點(diǎn)E,同時(shí)交直線DC于點(diǎn)Q.
①當(dāng)點(diǎn)Q在線段DC的延長(zhǎng)線上時(shí),設(shè)AP=x,CQ=y,求y關(guān)于x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
②當(dāng)CE=1時(shí),寫出AP的長(zhǎng).(不必寫解答過程)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如如在直角坐標(biāo)系中,二次函數(shù)y=x2-4x+中的頂點(diǎn)是C,與x軸相交于A,B兩點(diǎn)(A在B的左邊).
(1)若點(diǎn)B的橫坐標(biāo)xB滿足5<xB<c,求中的取值范圍;
(2)若tan∠ACB=
4
,求中的值;
(十)當(dāng)中=c時(shí),點(diǎn)D,E同時(shí)從點(diǎn)B出發(fā),分別向左、向右在拋物線它移動(dòng),點(diǎn)D,E在x軸它的正投影分別為M,N,設(shè)BM=m(m<cB),BN=n,當(dāng)m,n滿足怎樣的等量關(guān)系時(shí),△cDE的內(nèi)心在x軸它?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線y=2x2+bx-2經(jīng)過點(diǎn)A(1,0).
(1)求b的值;
(2)設(shè)P為此拋物線的頂點(diǎn),B(a,0)(a≠1)為拋物線上的一點(diǎn),Q是坐標(biāo)平面內(nèi)的點(diǎn),若以A、B、P、Q為頂點(diǎn)的四邊形為平行四邊形,這樣的Q點(diǎn)有幾個(gè),并求出PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:拋物線y=x2+(b-1)x+c經(jīng)過點(diǎn)P(-1,-2b).
(1)求b+c的值;
(2)若b=3,求這條拋物線的頂點(diǎn)坐標(biāo);
(3)若b>3,過點(diǎn)P作直線PA⊥y軸,交y軸于點(diǎn)A,交拋物線于另一點(diǎn)B,且BP=2PA,求這條拋物線所對(duì)應(yīng)的二次函數(shù)關(guān)系式.(提示:請(qǐng)畫示意圖思考)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知拋物線y=
3
4
x2+bx+c與坐標(biāo)軸交于A、B、C三點(diǎn),A點(diǎn)的坐標(biāo)為(-1,0),過點(diǎn)C的直線y=
3
4t
x-3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),過P作PH⊥OB于點(diǎn)H.若PB=5t,且0<t<1.
(1)填空:點(diǎn)C的坐標(biāo)是______,b=______,c=______;
(2)求線段QH的長(zhǎng)(用含t的式子表示);
(3)依點(diǎn)P的變化,是否存在t的值,使以P、H、Q為頂點(diǎn)的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案